Preliminary Site Investigation Planning Proposal

Location:

Lot 42 DP 868366 & Lot 1 DP 957677 1055 Bruxner Highway Goonellabah NSW

Prepared for:

Nimble Estates Pty Ltd

Report No:

HMC2022.1106

September 2022

Suite 29, Level 2, Wharf Central, 75 Wharf Street PO Box 311, Tweed Heads NSW 2485 p. 07 5536 8863 f. 07 5536 7162 e. admin@hmcenvironment.com.au w. www.hmcenvironment.com.au abn 60 108 085 614

RE: Lot 42 DP 868366 & Lot 1 DP 957677, 1055, Bruxner Highway, Goonellabah NSW.

HMC Environmental Consulting Pty Ltd is pleased to present our report for a Preliminary Site Investigation for the abovementioned site.

We trust this report meets with your requirements. If you require further information, please contact HMC Environmental Consulting directly on the numbers provided.

Yours sincerely

Mark Tunks (B.App.Sc.Env.Hlth)

Document Control Summary					
HMC Environmental Consulting		PH:	755368863		
PO Box 311		FAX:	755367162		
Tweed Heads NSW 2485		Email	admin@hmcenvironment.com.au		
Title: Preliminary Site Investi		estigation			
Job No: 2022.1106					
Client:	Nimble Estates Pty	Ltd			

Document Record:				
Version	Date	Prepared by	Checked by	Approved for issue by
Draft Issue A	30.09.2022	MF	MT	
Draft Issue B	02.11.2022	КН		
Final Issue A	02.11.2022	LH		

Distribution List	Date Issued	Method of Transmission	Number of Copies
S. Anderson (Developed Pty Ltd)	30.09.2022	Email	pdf
N. Ejupi Nimble Estates	02.11.2022	Email	pdf
N. Ejupi Nimble Estates	02.11.2022	Email	pdf

This report should be cited as 'HMC Environmental Consulting (2022). Preliminary Site Investigation, Planning Proposal, Lot 42 DP 868366 & Lot 1 DP 9576771055, Bruxner Highway, Goonellabah NSW. Report No. HMC2022.1106.'

COPYRIGHT	
© HMC Environmental Consulting Pty Ltd, 2022	
All intellectual property and copyright reserved.	
Apart from any fair dealing for the purpose of private study, research, criticism, or review, as permitted	
under the Copyright Act, 1968, no part of this report may be reproduced, transmitted, stored in a retrieval system or adapted in any form or by any means (electronic, mechanical, photocopying, recording or	
otherwise) without written permission. Enquiries should be addressed to HMC Environmental Consulting	l
Pty Ltd.	I

EXECUTIVE SUMMARY

Background

A Planning Proposal for the rural landholding located at 1055 Bruxner Highway, Goonellabah NSW, would amend the *Lismore Local Environmental Plan 2012* (LLEP) to enable mixed use development including residential, commercial, industrial and public open space land use within the site. HMC Environmental Consulting (HMC) was commissioned to undertake the required investigation to address potential site contamination, associated with current and former land use, in accordance with *State Environmental Planning Policy (Resilience and Hazards) 2021 (SEPP 2021)*.

A Preliminary Site Investigation (PSI) including a desktop assessment of available information, and a detailed site inspection indicated that several historic structures including dilapidated dwellings (2), outbuildings, dairy and farm storage sheds are existing on the northern, elevated part of the site, proposed for residential land use. Given the age of these dilapidated structures, there is potential that the surrounding soil may have been impacted by bonded asbestos containing material (ACM) fragments and lead from historic building materials. A number of the non-residential structures may have also been used for the bulk storage of agricultural chemicals or fuel, which is a potentially contaminating activity.

A Soil and Analysis Quality Plan (SAQP) was developed for the investigation area. Surface soil samples were collected, and subject to laboratory analysis for concentrations of potential contaminants of concern (PCoC). Bulk samples of suspect bonded ACM were also collected on and around several structures.

Objectives

The objectives of the Preliminary Site Investigation are to:

- 1. Assess the current and former land use on the property for potentially contaminating activities.
- 2. If potentially contaminating activities are identified, undertake a preliminary soil investigation to assess the suitability of the site for the proposed land uses within the planning proposal.

Scope Of Works

The scope of work undertaken during the investigation included the following:

- A desktop assessment of current and former land use on the site including search of available records including previous site investigations.
- A detailed site inspection.
- Soil Investigation
 - Round 1 Collection of 22 primary soil samples + 4 x QA/QC soil samples around the existing structures, and laboratory analysis for potential contaminants of concern (PCoC) including total metals, organochlorine/organophosphorus chemicals, and petroleum hydrocarbons (nonresidential suspect structures);
 - Round 2 Collection of 20 primary soil samples + 2 x QA/QC soil samples around the identified lead-impacted soil locations and historic demolished farm shed location, and laboratory analysis for total metals, organochlorine/organophosphorus chemicals and petroleum hydrocarbons;
- Preparation of a Preliminary Site Investigation report including:
 - detailed site history;
 - location of sampling locations;
 - sampling method, QA/QC
 - assessment of laboratory results;
 - conclusions and recommendations, including suitability of the site for the planning proposal, and need for further investigation and remediation.

Conclusion/Recommendations Summary

The Preliminary Site Investigation conclusions are based on the information described in this report and Appendices and should be read in conjunction with the complete report, including Section 14 Limitations.

A Planning Proposal for the rural landholding located at 1055 Bruxner Highway, Goonellabah NSW, is proposed to amend the *Lismore Local Environmental Plan 2012* (LLEP) to enable mixed use development including residential, commercial, industrial and public open space on the land. A Preliminary Site Investigation (PSI), including a desktop assessment of available information, and a detailed site inspection, indicated the property was used as a dairy and for cattle grazing since at least prior to 1942. There are a number of existing structures and a demolished structure location, found on the northern part of the site, however, which given their apparent age, potentially contain historic hazardous building materials. Due to their dilapidated state and weathering, these materials may have caused contamination to the surrounding soils. The non-residential structures may also have been associated with the storage/mixing/spillage of agrichemicals and fuel.

A Soil and Analysis Quality Plan was prepared, and implemented, to assess total soil concentrations of potential contaminants of concern including pesticides, metals and petroleum hydrocarbons, in the immediate surrounds of the structures. Laboratory results recorded generally all organochlorine and organophosphorus chemicals, and petroleum hydrocarbons, below the laboratory level of reporting (LOR) and, therefore, below the investigation criteria. Other metal results were typical of background levels. A single total chromium result, exceeded the speciated chromium (VI) criteria, however, it is unlikely chromium (VI) would be associated with this land use.

Elevated lead results were recorded in a number of locations across the site which exceeded the investigation criteria. Although additional soil investigation delineated some of the locations additional future investigation would be required prior to any remediation associated with a development application.

The identified lead-impacted soil and bonded asbestos containing material is located in surface soil around the existing structures on the northern part of the site, and any future remediation of the small areas of concern would be able to be managed effectively, with remediation options including reinterment on site, or removal off-site to an approved facility.

Based on the information presented, in relation to potential site contamination associated with the current and former land use, the proposed Planning Proposal site, located on Lot 42 DP 868366 & Lot 1 DP 9576771055, 1055 Bruxner Highway, Goonellabah NSW, as shown in Appendix 2 & 3 of this report, is considered suitable for the proposed future mixed use development subject to:

- 1. Prior to the submission of a development application for development in the area shown as AoC 1 and AoC 2 in this report, a Detailed Site Investigation is to be prepared by a suitably qualified environmental consultant to further delineate the potential contaminants of concern identified in and around the existing dwellings and associated structures.
- 2. Following the preparation of the Detailed Site Investigation in 1 above, a Remedial Action Plan is to be prepared providing details on required remediation and validation of lead-impacted soil and other identified potential contaminants of concern.

TABLE OF CONTENTS

E)	(ECU	FIVE SUMMA	RY	3
	Back	ground		3
	Obje	ctives		3
	Scop	e Of Works		3
	Cond	lusion/Recor	nmendations Summary	4
1	IN	TRODUCTION	١	8
	1.1	Backgrou	nd	8
	1.2	Project D	escription	8
	1.3	Objective	e of the Investigation	8
	1.4	Scope Of	Works	8
2	SI	TE IDENTIFICA	ATION	9
3	SI	TE HISTORY		10
	3.1	Ownersh	ip	10
	3.2	Aerial Ph	otograph Interpretation	10
	3.3	Historic F	Parish Maps & Topographic Maps	11
	3.4	Previous	Investigation	12
	3.5	Summary	/	12
4	SI	TE CONDITIO	N	12
	4.1	Summary	/ of Site Conditions	12
	4.2		ling Environment and Land Use	
	4.3	Site phot	ographs	13
	4.4	Site Feat	ures	13
5	ID	ENTIFIED ARE	EAS OF CONCERN AND POTENTIAL CONTAMINANTS OF CONCERN	13
6	AF		VESTIGATION LEVELS AND INVESTIGATION CRITERIA	
	6.1		ria	
	6.2		Environmental Media	
	6.3	•	tion Criteria	
7		-	OBJECTIVES	
8	SA		O ANALYSIS PLAN AND SAMPLING METHODOLOGY	
	8.1		, analysis and data quality objectives	
	8.2	•	oling and Analysis Program	
9			RANCE AND QUALITY CONTROL	
1(NALYTICAL RESULTS	
	10.1		k	
	10.2	•	l Testing	
	10.3	0	ram	
	10.4	•	and Replicate Results	
	10.5		aboratory Data Review	
			ive percent difference (RPD)	
			tical Analysis	
	10.6		tigation Conclusions	
1:			VESTIGATION	
12			L SITE MODEL	
13			NS AND RECOMMENDATIONS	
14			5	
1				
16	-			
17				
18				
		••	Property Locality	
		Appendix 2	Property Boundaries	
		Appendix 3	Illustrative Concept Plan	
		Appendix 4	Geology and Soil Landscape	34

Appendix 5	Cattle Dip Sites	35
Appendix 6	Licensed Groundwater Bores	36
Appendix 7	Historic Aerial Photography	37
Appendix 8	Historic Topographical Maps	42
Appendix 9	Historic Parish Maps	
Appendix 10		
Appendix 11	Photographic Log	
Appendix 12		
Appendix 13	Sampling Locations	53
Appendix 14	Laboratory Results Summary & RPD	
Appendix 15	Asbestos Investigation – Chain of Custody and Laboratory Certificates	59
Appendix 16	Round 1 – Chain of Custody and Laboratory Certificates	60
Appendix 17		
	, , ,	

LIST OF TABLES

Table 1 - Site Identification Summary	9
Table 2 – Site Characteristics	9
Table 3 – Aerial Summary	
Table 4 – Statutory Searches	11
Table 5 - Historic Parish and Topographic Map Summary	
Table 6 - Site Inspection Features and Potential Contamination Indicators	13
Table 7 - Investigation Criteria (Soil & Sediment)	15
Table 8 – Soil Quality Control Samples	
Table 9 - Data Quality Indicators	
Table 10 – Sample Locations	20
Table 11 – Laboratory Results Summary – Round 1 (5 August 2022)	22
Table 12 – Laboratory Results Summary – Round 2 (5 September 2022)	23
Table 13 - Laboratory Results – Round 1 (05.08.2022)	55
Table 14 - Laboratory Results – Round 2 (05.09.2022)	57
Table 15 - Relative Percentage Difference (RPD%)	58

LIST OF FIGURES

Figure 1 - Surrounding Area - Arrow pointing to investigation area within Goonellabah, NSW	30
Figure 2 – Property boundaries for the subject site (Source: Nearmap 2022)	31
Figure 3 - Geology Map (Source: HMC GIS)	34
Figure 4 - Soil Landscape (Wollongbar Map (http://www.environment.nsw.gov.au/eSpadeWebApp/)	34
Figure 5 - Cattle Dip Sites (Source: HMC GIS)	35
Figure 6 – Groundwater Bore Locations (Source: http://allwaterdata.water.nsw.gov.au/water.stm)	36
Figure 7 - Historical Aerial 1958 (NSW Historic imagery viewer)	37
Figure 8 - Historical Aerial 1971 (NSW Historic imagery viewer)	37
Figure 9 – Historical Aerial 1979 (NSW Historic imagery viewer)	38
Figure 10 – Historical Aerial 1987 (NSW Historic imagery viewer)	38
Figure 11 – Historical Aerial 1991 (NSW Historic imagery viewer)	39
Figure 12 – Historical Aerial 1997 (NSW Historic imagery viewer)	39
Figure 13 - Historical Aerial 2003 (Google Earth)	40
Figure 14 – Historical Aerial 2004 (Google Earth)	40
Figure 15 – Current Aerial 2022 (Nearmap)	41
Figure 16 - Topographical Extract (Lismore) 1942	42
Figure 17 - Topographical Extract (Lismore) 2011	42
Figure 18 - GeoPDF Topographical Map Extract (Lismore) 2016	43
Figure 19 - Parish Map Extract (1914)	44
Figure 20 - Parish Map Extract (1926)	44
Figure 21 - Parish Map Extract (1940)	45
Figure 22 – NSW Legislation Zone Plan	46

Abbreviations/acronyms

ACM	Asbestos containing material
ANZECC	Australian and New Zealand Environment and Conservation Council
AOC	Area of Concern
ARMCANZ	Agricultural and Resource Management Council of Australia and New Zealand
AS	Australian Standard
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure 1999 (amended 2013)
Client	Nimble Estates Pty Ltd
CLM Act	Contaminated Land Management Act 1997
CSM	Conceptual site model
DQO	Data quality objective
DSI	Detailed Site Investigation
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ERA	Environmental Risk Assessment
HIL	Health investigation Level
НМС	HMC Environmental Consulting
LLEP 2012	Lismore Local Environmental Plan 2012
LOR	Laboratory Limit of Reporting
mBGL	Metres below ground level
OEH	[NSW] Office of Environment and Heritage
PCoC	Potential Contaminant of Concern
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance/Quality Control
RAP	Remedial Action Plan
RL mAHD	Reduced Level Metres Australian Height Datum
SAQP	Sampling and analysis quality plan
Site	Lot 42 DP 868366 & Lot 1 DP 957677, 1055, Bruxner Highway, Goonellabah NSW

1 INTRODUCTION

1.1 Background

A Planning Proposal for the rural landholding located at 1055 Bruxner Highway, Goonellabah NSW, would amend the *Lismore Local Environmental Plan 2012* (LLEP) to enable mixed use development including residential, commercial, industrial and public open space land use within the site. HMC Environmental Consulting (HMC) was commissioned undertake the required investigation to address potential site contamination, associated with current and former land use, in accordance with *State Environmental Planning Policy (Resilience and Hazards) 2021 (SEPP 2021)*.

A Preliminary Site Investigation (PSI) including a desktop assessment of available information, and a detailed site inspection indicated that several historic structures including dilapidated dwellings (2), outbuildings, dairy and farm storage sheds are existing on the northern, elevated part of the site, proposed for residential land use. Given the age of these dilapidated structures, there is potential that the surrounding soil may have been impacted by bonded asbestos containing material (ACM) fragments and lead from historic building materials. A number of the non-residential structures may have also been used for the bulk storage of agricultural chemicals or fuel, which is a potentially contaminating activity.

A Soil and Analysis Quality Plan (SAQP) was developed for the investigation area. Surface soil samples were collected, and subject to laboratory analysis for concentrations of potential contaminants of concern (PCoC). Bulk samples of suspect bonded ACM were also collected on and around several structures.

1.2 Project Description

The Planning Proposal includes amending the LLEP 2012 for the rural property located at 1055 Bruxner Highway, Goonellabah NSW. The site is currently mapped as Primary Production (RU1) land, and is proposed to be rezoned to allow for a future mixed-use subdivision including residential, commercial, industrial, and public open space lots. An indicative layout plan of the future development is included in **Appendix 3**.

The property is currently used for livestock grazing, with a number of dilapidated, abandoned structures existing onsite, including two dwellings (dwelling No 1 to the south and No 2 to the north), and former farming structures, all located on the northern portion of the property, accessible via the Bruxner Highway. The remainder of the property is currently primarily cleared grazing land with pasture grass and scattered vegetation.

1.3 Objective of the Investigation

The objectives of the Preliminary Site Investigation are to:

- 1. Assess the current and former land use on the property for potentially contaminating activities.
- 2. If potentially contaminating activities are identified, undertake a preliminary soil investigation to assess the suitability of the site for the proposed land uses within the planning proposal.

1.4 Scope Of Works

The scope of work undertaken during the investigation included the following:

- A desktop assessment of current and former land use on the site including search of available records including previous site investigations.
- A detailed site inspection.
- Soil Investigation
 - Round 1 Collection of 22 primary soil samples + 4 x QA/QC soil samples around the existing structures, and laboratory analysis for potential contaminants of concern (PCoC) including total metals, organochlorine/organophosphorus chemicals, and petroleum hydrocarbons (nonresidential suspect structures);

•

- Round 2 Collection of 20 primary soil samples + 2 x QA/QC soil samples around the identified lead-impacted soil locations and historic demolished farm shed location, and laboratory analysis for total metals, organochlorine/organophosphorus chemicals and petroleum hydrocarbons;
- Preparation of a Preliminary Site Investigation report including:
 - detailed site history;
 - location of sampling locations;
 - sampling method, QA/QC
 - assessment of laboratory results;
 - conclusions and recommendations, including suitability of the site for the planning proposal, and need for further investigation and remediation.

2 SITE IDENTIFICATION

Table 1 - Site Identification Summary				
Street Address		1055 Bruxner Highway, Goonellabah NSW		
Allotment size		75.24 Hectares		
Allotment Description	on	Lot 42 DP 868366 & Lot 1 DP 957677		
Property No.		26279 & 20265		
Local Government		Lismore City		
Parish		Lismore		
County		Rous		
Geographical Coordi	inates	Easting: 6812109.65 m E		
(MGA Zone 56)		Northing: 534663.79 m S		
		(Approximate centre of site).		
Existing Zoning (LLE	P)	RU1 Primary Production		
Land use - Existing		Agricultural – Livestock Grazing		
Land use - Proposed		Mixed-use including residential, commercial, industrial & public open space		
Site Services		Power		
	North	Bruxner Highway, Agricultural (macadamia orchard), residential		
Surrounding land	East	Agricultural (livestock grazing, macadamia orchard), rural living		
uses	South	Agricultural (livestock grazing, macadamia orchard), residential		
	West	Commercial/industrial, agricultural (livestock grazing), residential		
Closest Sensitive Env	vironment	South of Bruxner Highway an east-west drainage line bisects the site		
		collecting site drainage and directing it west into the ephemeral Tucki Tucki		
		Creek. North of the Bruxner Highway the site drainage is directed south and		
		west and is collected via the street stormwater system.		
		Table 2 – Site Characteristics		
Topography		The property is undulating, with moderate to steep sloping in areas,		
		particularly towards Tucki Tucki Creek bisecting the centre of the property.		
		The elevation is approximately 145m – 189m across the property.		
		(ELVIS - <u>https://elevation.fsdf.org.au/</u>)		
Regional Geology (H	ashimoto	Cenozoic Mafic Volcanic Rocks		
el al 2008)		Rocks which erupted from widespread volcanic activity over the last 65		
		million years (Tweed Volcano). Includes basalt flows and eruptive products		
		associated with the volcano.		
Soil Landscape (Mor	and, 1996)	Wollongbar (wo) soil landscape (Expected)		
		Rolling and undulating hills on plateau surfaces of the Lismore Basalts. Soils		
		are expected to be mostly deep well-drained Krasnozems with shallower		
		stoner Krasnozems on crest/upper slope boundaries and Wet alluvial		
	C	Krasnozems in drainage lines.		
Australian Soil Class		Ferrosols (FE)		
https://www.environm	ient.nsw.gov	Soils with B2 horizons which are high in free iron oxide, and which lack		
.au/eSpade2Webapp		strong texture contrast between A and B horizons		
		These soils are almost entirely formed on either basic or ultrabasic igneous		
		rocks, their metamorphic equivalents, or alluvium derived therefrom.		

	Although these soils do not occupy large areas in Australia, they are widely recognised and often intensively used because of their favourable physical properties.
Regional Hydrogeology	Groundwater vulnerability is not mapped for the site. Groundwater flow would be expected to reflect surface flows with gradients towards the north away from the elevated areas to the south. The groundwater would be expected to be shallow (<5m) in areas of the undulating land.
Groundwater Database Search	The online NSW Office of Water groundwater mapping (<u>http://allwaterdata.water.nsw.gov.au/water.stm</u>) shows the nearest registered groundwater bore is GW052458, greater than 250m east of the site. The bore is registered for domestic use.

3 SITE HISTORY

3.1 Ownership

The property is currently owned by Nimble Estates Pty Ltd. A review of the title information via the online Land and Property Information portal on 22 August 2022 provides the following information:

Folio Description	Date of Folio	Search Date	Ownership Details
42/868366	19/4/2022	22/8/2022	Nimble Estates Pty Ltd

3.2 Aerial Photograph Interpretation

A summary of the available historic aerial photography is shown in table 3.

|--|

Year	Source	Comments	Areas of Potential Concern Yes/No
1958	NSW Government	The property appears to be clear of native vegetation, with only scattered trees remaining. The site is clear of any cropping, plantations other intensive land uses, most likely used for livestock grazing. Both of the existing dwellings (now dilapidated) are visible. Numerous other structures also appear to be existing, including the garage, shed and previously demolished store shed at dwelling No 1, and the outhouse/laundry at dwelling No 2 (see Appendix 12 & 13). The surrounding area also appears to have been generally cleared of native vegetation, with scattered structures visible along the now Bruxner Highway.	YES Potential contamination due to hazardous historic building materials in aging structures. Potential
1971	(Historical Imagery) ⁽¹⁾	Similar to 1958. The existing dairy bales are visible adjacent to dwelling No 2. The property remains clear of any visible intensive land uses. There is increased vegetation around the structures.	storage of agrichemicals and fuel in numerous
1979		Similar to 1971.	existing
1987		Similar to 1987. The adjoining property to the east has now been planted out as a macadamia orchard.	structures.
1991		Similar to 1987.	-
1997		Similar to 1991. The existing carport at dwelling No 2 is now visible. The adjoining land to the west has begun to be developed into residential housing. The adjoining property to	

		the south has been planted out as a macadamia orchard.
2009-2015	Google Earth	The are no visible changes noted to the structures on site. The property remains clear of any visible intensive agricultural land uses. Scattered vegetation remains on the property. The land to the west has generally been developed into residential and commercial properties.
2016 – 2022		The store shed appears to have now been demolished. Some vegetation has been cleared around the existing structures and on the southwest corner of the property. No other significant changes were noted in subsequent years.

(1) <u>https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb</u>

Table 4 – Statutory Searches				
Search	Comment			
NSW EPA Contaminated Land Public Record	No records (orders, notices) for the site were			
http://www.epa.nsw.gov.au/prcImapp/searchregister.aspx	discovered.			
Australian Department of Defence Unexploded Ordinance	No UXO sites are recorded in close proximity to			
Contaminated Sites	the subject site.			
http://www.defence.gov.au/uxo/where_is_uxo/UXOSearc				
h.asp?State=NSW				
Cattle dip site locator	The nearest mapped cattle dip site is Alphadale			
http://www.dpi.nsw.gov.au/agriculture/livestock/health/s	Dip (Demolished), located greater than 680m			
pecific/cattle/ticks/cattle-dip-site-locator	east of the site.			

Table 4 – Statutory Searches

3.3 Historic Parish Maps & Topographic Maps

A summary of the available historic parish and topographic mapping information is shown in table 5.

Search	Comment
Historic parish maps 1914, 1926 & 1940 http://images.maps.nsw.gov.au/pixel.htm	Maps do not record land use. Lismore parish maps 1914 to 1940 show the property as part of the historic portions 196 (78 acres), 241 (42 acres) and 236 (100 acres). No changes noted during this period.
 Topographic maps Australian Section of the Imperial General Staff (1942), N°245 Zone 8 Lismore, Topographic Map 	The topographic map shows a single structure on the property with scattered timber mapped over the property. Non-perennial streams are mapped flowing towards the centre of the property. No other land uses are mapped.
• NSW Land & Property Information (2011), 1:25000 9540-2N Lismore, Topographic Map	Four structures are mapped on the property with a vehicle track shown from the Bruxner Highway to the structures. Scattered patches of <i>open forest</i> are mapped on the property. Non-perennial streams are mapped flowing downslope towards the Tucki Tucki Creek.
 NSW Land & Property Information (2016), 1:25000 9540-2N Lismore, GeoPDF Topographic Map 	Similar to 2011. Five structures are now mapped.

Table 5 - Historic Parish and	Topographic Map Summary

3.4 Previous Investigation

HMC previously prepared a Preliminary Site Investigation (**HMC2015.128**) for the property in 2015 for a previously rejected development proposal (**DA15/356**) including a service station, modular home estate and community farm. As part of this investigation, historic information was gathered from the council and previous owners. Lismore council confirmed that there were no building records or land contamination issues on file. Helen Tunks of HMC conducted an interview with former owner Robert Rose on the 8th of October 2015, whose family had originally established the farm. The information gathered at that time is summarised below:

- Mr Rose sold the farm in November 2014.
- Mr Rose's grandfather bought the property around 1910 and cleared the land for dairying.
- The property was then passed on to Mr Rose's father and then onto himself.
- The property was generally used for dairying up until approximately 50 years ago and cattle grazing since that time.
- There are two dwellings on the property
- The existing former dairy is located near the southern dwelling (Dwelling No 1) and was built around 1955.
- The farm has never been used for sugar cane cultivation or bananas.
- No cattle dip site on the farm.
- No structures on Lot 1.
- No bulk fuel or chemical storage areas
- Not aware of any potentially contaminating activities on the farm.

The HMC report concluded that no potentially contaminating activities had occurred on the property since it was cleared of native vegetation until the time of reporting. It noted the presence of asbestos containing material (ACM) in the existing structures and provided the recommendation that:

"Prior to demolition of the dwellings on Lot 42 DP 868366 1055 Bruxner Highway Goonellabah, a Workcover NSW licensed contractor remove any hazardous waste including asbestos containing material from the structures and dispose of the material in accordance with Workcover NSW and Lismore City Council requirements".

3.5 Summary

Historic aerial photography and topographic mapping show the property, and the surrounding area, generally cleared of native vegetation prior to 1942. The presence of the dairy bales on site, as well as anecdotal evidence provided by a previous owner, indicates that the property was established as a dairy farm in the early 1900s and has been used for dairying and cattle grazing in the years since. There was no evidence discovered that indicated that any cropping or plantations had existed on the site.

The existing structures, including both dwellings, are visible in the 1958 historic aerial photograph with no notable changes to the structures (other than dilapidation) discovered since. The farm storage shed was demolished prior to 2016. Hazardous materials may have been used in the construction of these historic structures, including lead paint, and bonded ACM.

The investigation area is within the increasingly developed Goonellabah area, and was generally cleared of native vegetation prior to 1958. Large portions of the surrounding properties, particularly to the east and south, have been planted out as macadamia orchards since prior to 1987. Development has also increased in subsequent years, particularly to the west, including Goonellabah's industrial area.

4 SITE CONDITION

4.1 Summary of Site Conditions

A site inspection was completed on 5th August 2022 by Mark Tunks, Matthew Flanagan and Taylah Richards of HMC, during the soil investigation (Round 1), and again on 5th September 2022 by Matthew Flanagan during the additional soil sampling (Round 2). The property was accessible via the Bruxner Highway to the north. A vehicle track is existing extending from the northern boundary to the existing structures on the northern portion of the

site. There are two existing dwellings on the property. The northern dwelling (No 2) is a weatherboard structure with an outhouse/laundry structure existing to the south, as well as an open carport structure adjacent. The southern weatherboard dwelling (No 1) had numerous structures existing surrounding it, including a garage to the north, two sheds to the east and dairy bales to the southeast. A stockpile of building materials remains on the site of the previously demolished farm storage shed to the southwest of dwelling No 1. All existing structures have been disused, and are in a state of severe disrepair.

The property is undulating, with steep to moderate slopes grading towards the Tucki Tucki Creek which is transecting through the centre of the property. Scattered vegetation is existing on the property, particularly around the existing structures. The remainder of the site is generally pasture grass cover. Cattle are present on the property.

4.2 Surrounding Environment and Land Use

The investigation area is located within the increasingly developed area of Goonellabah. Residential and commercial/industrial development is existing to the west, while the south and east remains agricultural. The adjoining properties to the east and south have been planted out as macadamia orchards.

4.3 Site photographs

See Appendix 11.

4.4 **Site Features**

The details of the site inspections are shown in table 6.

Table 6 - Site Inspection Features and Potential Contamination Indicators				
Features of Contamination	Comments			
Disturbed, discoloured or stained soil	No disturbed, discoloured, or stained soil noted.			
Disturbed or distressed vegetation	No disturbed or distressed vegetation.			
Surface water quality	Tucki Tucki Creek appears to have been of good water quality.			
Agrichemical Storage/Use	None recorded on the property.			
Other chemical/fuel storage	None recorded.			
Waste storage	None recorded.			
Asbestos Waste or Use in Structures	Bonded ACM may be present in the eaves soffit, and internal linings to			
	the dwellings. Lead flashing and paint may also be present.			
Fill from unapproved source	None recorded.			
Blue bags, trellises or cropping	No blue bags, cropping contours or trellis remnants were recorded.			
contours				

c c'· ·

IDENTIFIED AREAS OF CONCERN AND POTENTIAL CONTAMINANTS OF CONCERN 5

Historic aerial photography and topographic mapping show the property and surrounding area generally cleared of native vegetation prior to 1942, with scattered mature vegetation remaining. The property was apparently historically used as a dairy farm, and has only been used for cattle grazing in recent years. There was no evidence of cropping or plantations having ever occurred on the site.

The existing structures are located on the northern portion of the site. They appear to be present in the 1958 historic aerial photography with only the farm storage shed demolished in subsequent years. Given the age of the structures, hazardous building materials may have been used in their construction, including bonded ACM and lead paint. Yellow and blue-coloured paint within the dwellings was typical of leaded paint material. Evidence of both were noted during the detailed site inspection. Given the state of disrepair the structures are in, and the weathering which has occurred, these materials may be present in the surrounding soil.

A number of outbuildings and farm sheds are located around the two existing dwellings on the northern part of the large agricultural farm. Several of these structures may have potentially been used for the bulk storage of agricultural chemicals and fuel. This is also a potentially contaminating activity.

The identified areas of concern (AoC) relate to the existing disused and dilapidated structures, and include the two existing dwellings. The two AoC are located on the northern elevated part of the property with extensive buffers to any sensitive receivers.

AoC 1 – Existing dwelling No 1 with associated garage, outbuildings, former dairy, demolished farm storage shed AoC 2 – Existing dwelling No 2 with associated laundry and carport

The potential contaminants of concern (PCoC) would be:

- bonded ACM fragments, and flaked lead paints particles from cladding and linings, generally associated with the existing dwellings
- organochlorine/organophosphorus chemicals, petroleum hydrocarbons, and metals associated with storage/mixing areas around existing and former farm storage sheds

6 APPLICABLE INVESTIGATION LEVELS AND INVESTIGATION CRITERIA

6.1 Soil Criteria

The planning proposal would increase the number of persons using the property. Currently the site is used for cattle grazing.

The proposal would allow for residential, commercial, industrial and recreational development which would include exponentially increase the occupancy of the property, and therefore, the potential exposure to PCoC would be increased. Final exposure would depend on the soil concentrations of PCoC, and the likely use of the land in the vicinity of any areas of concern (AoC).

The location of the AoC is proposed for future residential development, and, therefore, the applicable exposure settings for potential exposure of persons to soil and soil disturbance associated with the potential land use for this initial Tier 1 assessment are:

- Health investigation level (HIL A) residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools.
- **Ecological investigation level (EIL)** Urban residential/public open space is broadly equivalent to the HIL A, HIL B and HIL C land use scenarios.
- Health Screening Levels (HSL A) Low high density residential (assessing fuel/oil contaminants only)
- Ecological Screening Level (ESL) Urban residential areas and public open space (assessing fuel/oil contaminants only)

The following guidance notes were considered in the preparation of this report:

- National Environmental Protection (Assessment of Site Contamination) Measure 1999 (April 2013), EPHC 2013, Canberra.
 - (Schedule B)
 - (1) Guidelines on the Investigation Levels for Soil and Groundwater, and
 - (2) Guidelines on Site Characterisation

In NSW the Measure is now being implemented by way of endorsement under section 105 of the Contaminated Land Management Act 1997. This will provide expanded technical guidance to site auditors, contaminated land consultants, planning authorities and the public when assessing a contaminated site.

- **NSW EPA (2022)** *Sampling Design Guidelines* were followed during design of the sampling and analysis plan and predetermination of data quality objectives (DQOs).
- SEPP (2021) State Environmental Planning Policy (Resilience and Hazards)— provided guidance on project objectives.'
- **NSW EPA (2020) Consultants reporting on contaminated land Contaminated land guidelines** were followed throughout the investigations and during preparation of this report

NSW DEC (2005) Contaminated Sites - Guidelines for Assessing Former Orchards and Market Gardens – were used to assist in sampling and analysis plan and preliminary screening criteria

Arsenic 100 100 Chromium 100 (VI) 400 (III) Copper 6000 210 Nickel 400 270 Zinc 7400 270 Cadmium 20	Table	Table 7 - Investigation Criteria (Soil & Sediment) Table 7 - Investigation Criteria (Soil & Sediment)			
Chromium 100 (VI) 400 (III) Copper 6000 210 Nickel 400 270 Zinc 7400 270 Cadmium 20	Metals/Metalloids (mg/kg)	HIL A ⁽¹⁾	EIL ⁽²⁾	HSL ⁽³⁾	ESL ⁽⁴⁾
Copper 6000 210 Nickel 400 270 Zinc 7400 270 Cadmium 20	Arsenic	100	100		
Nickel 400 270 Zinc 7400 270 Cadmium 20	Chromium	100 (VI)	400 (III)		
Zinc 7400 270 Cadmium 20	Copper	6000	210		
Cadmium 20 Lead 300 1100 Mercury (inorganic) 40 0 Organochlorine/Organophosphorus Chemicals (mg/kg) 40 100 Chenicals (mg/kg) 6 1 Dieldrin + Aldrin 6 1 DDT+DDD+DDE 240 1 Heptachlor 6 1 Chlordane 270 1 Endsulfan 270 1 Endrin 10 10 Benzene 0.6 65 Toluene 110 45 Total Yelnes 110 45 Total Yelnes 110 45 Colo-C16 230 120 >C10-C16 230 120 >C10-C16 230 120 >C16-C34 5600 1300 >C34-C40 5600 1300 Total >C10-C40 4 170 Polyaromatic Hydrocarbons 4 170 Endronoprene - 0.7	Nickel	400	270		
Lead 300 1100 Mercury (inorganic) 40	Zinc	7400	270		
Mercury (inorganic) 40 Image: marked state st	Cadmium	20			
Organochlorine/Organophosphorus Image: Chemicals (mg/kg) Image: Chemicals (mg/kg) <tht< td=""><td>Lead</td><td>300</td><td>1100</td><td></td><td></td></tht<>	Lead	300	1100		
Chemicals (mg/kg)S0Chlordane50Dieldrin + Aldrin6DDT+DD+DDE240Heptachlor6Chloryprifos160Endosulfan270Endrin10BTEX (mg/kg)0.6Benzene0.6Total Petroleum Hydrocarbons10C6-C10480>C10-C16230>C16-C34230>C16-C34230>C16-C345600>C16-C345600>C16-C345600>C16-C345600>C16-C345600>C10-C4040Polyaromatic Hydrocarbons (mg/kg)4Napthalene Benzo-pyrene4Aphtalene Benzo-pyrene4Carcinogenic PAHs (as BaP TEQ)4	Mercury (inorganic)	40			
Chlordane 50 Dieldrin + Aldrin 6 DDT+DDD+DDE 240 Heptachlor 6 Chlorpyrifos 160 Endosulfan 270 Endrin 10 BTEX (mg/kg) 0.6 65 Benzene 0.6 65 Toluene 480 105 Ethyl Benzene NL 125 Total Xylenes 110 45 C6-C10 440 180 >C10-C16 440 180 >C10-C16 230 120 >C16-C34 5600 1300 >C34-C40 5600 5600 Total >C10-C40 40 1300 Polyaromatic Hydrocarbons 41 170 Restruct Hydrocarbons 44 170 Benzo-pyrene 0.7 0.7	Organochlorine/Organophosphorus				
Dieldrin + Aldrin 6 DDT+DDP+DDE 240 Heptachlor 6 Chlorpyrifos 160 Endosulfan 270 Endrin 10 BTEX (mg/kg) 0.6 Benzene 0.6 Toluene 480 Ethyl Benzene 110 Total Xylenes 110 Total Petroleum Hydrocarbons (mg/kg) 40 C6-C10 230 >C10-C16 230 >C10-C16 5600 Total >C10-C40 5600 Polyaromatic Hydrocarbons (mg/kg) 4 Napthalene 4 170 Benzo-pyrene 0.7					
DT+DDD+DDE 240 Heptachlor 6 Chlorpyrifos 160 Endosulfan 270 Endrin 10 BTEX (mg/kg) 0.6 Benzene 0.6 Toluene 480 Ethyl Benzene 110 Total Xylenes 110 Total Petroleum Hydrocarbons (mg/kg) 40 C6-C10 440 >C10-C16 230 >C16-C34 5600 >C34-C40 1300 Total Schocarbons (mg/kg) 40 180 Napthalene 40 120 Folgene 1300 230 C10-C40 1300 20					
Heptachlor 6 Chlorpyrifos 160 Endosulfan 270 Endrin 10 BTEX (mg/kg) 0.6 65 Benzene 480 105 Toluene NL 125 Ethyl Benzene 110 45 Total Xylenes 110 45 Total Petroleum Hydrocarbons 40 180 (mg/kg) 230 120 >C16-C16 230 120 >C16-C34 5600 5600 >C34-C40 1300 5600 Total >C10-C40 4 170 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 4 170		-			
Chiorpyrifos 160 Endosulfan 270 Endrin 10 BETX (mg/kg) Benzene 0.6 65 Toluene 480 105 Ethyl Benzene NL 125 Total Xylenes 110 45 Total Petroleum Hydrocarbons (mg/kg) 40 180 C6-C10 400 180 >C10-C16 230 120 >C16-C34 1300 5600 >C34-C40 5600 5600 Total >C10-C40 4 170 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 6.7 0.7 Benzo-pyrene 0.7 0.7					
Endosulfan 270 Endrin 10 BTEX (mg/kg) 0.6 Benzene 0.6 Toluene 480 Ethyl Benzene NL Total Xylenes 110 Total Petroleum Hydrocarbons (mg/kg) 40 C6-C10 440 >C10-C16 230 >C10-C16 5600 >C10-C10 5600 >C10-C10 5600 >C10-C16 230 120 >C10-C16 5600 1300 >C34-C40 5600 5600 Total >C10-C40 4 170 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 6.7 0.7 Benzo-pyrene 0.7 0.7 Carcinogenic PAHs (as BaP TEQ) 6 0.7					
Endrin10Image: marking state in the					
BTEX (mg/kg)Image: model of the system of the s					
Benzene 0.6 65 Toluene 480 105 Ethyl Benzene 110 45 Total Xylenes 110 45 Total Petroleum Hydrocarbons (mg/kg) 40 180 C6-C10 40 180 >C10-C16 230 120 >C16-C34 5600 1300 >C34-C40 5600 5600 Total >C10-C40 4 170 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 4 0.7 Benzo-pyrene 0.7 0.7		10			
Toluene 480 105 Ethyl Benzene NL 125 Total Xylenes 110 45 Total Petroleum Hydrocarbons (mg/kg) 40 180 C6-C10 40 180 >C10-C16 230 120 >C16-C34 1300 5600 >C34-C40 5600 1300 Total >C10-C40 4 170 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 6 0.7 Benzo-pyrene 0.7 0.7	BTEX (mg/kg)				
Ethyl BenzeneNL125Total Xylenes11045Total Petroleum Hydrocarbons (mg/kg)45C6-C1040180>C10-C16230120>C16-C341300>C34-C405600Total >C10-C401Polyaromatic Hydrocarbons (mg/kg)4Napthalene4Benzo-pyrene0.7Carcinogenic PAHs (as BaP TEQ)120	Benzene			0.6	65
Total Xylenes11045Total Petroleum Hydrocarbons (mg/kg)45C6-C1040180>C10-C16230120>C16-C341300>C34-C405600Total >C10-C405600Polyaromatic Hydrocarbons (mg/kg)4Napthalene4Benzo-pyrene0.7Carcinogenic PAHs (as BaP TEQ)0	Toluene			480	105
Total Petroleum Hydrocarbons (mg/kg) 40 180 C6-C10 40 180 >C10-C16 230 120 >C16-C34 1300 1300 >C34-C40 5600 5600 Total >C10-C40 1 1 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 4 170 Benzo-pyrene 0.7 0.7	Ethyl Benzene			NL	125
(mg/kg) (Mg/kg) <t< td=""><td>Total Xylenes</td><td></td><td></td><td>110</td><td>45</td></t<>	Total Xylenes			110	45
C6-C10 40 180 >C10-C16 230 120 >C16-C34 1300 1300 >C34-C40 5600 5600 Total >C10-C40 Polyaromatic Hydrocarbons (mg/kg) 4 170 Napthalene 4 170 Benzo-pyrene 0.7 0.7 Carcinogenic PAHs (as BaP TEQ)	Total Petroleum Hydrocarbons				
>C10-C16 230 120 >C16-C34 1300 >C34-C40 5600 Total >C10-C40 1 Polyaromatic Hydrocarbons (mg/kg) 1 Napthalene 4 Benzo-pyrene 0.7 Carcinogenic PAHs (as BaP TEQ) 1	(mg/kg)				
>C16-C341300>C34-C405600Total >C10-C40Polyaromatic Hydrocarbons (mg/kg)Napthalene4Benzo-pyrene0.7Carcinogenic PAHs (as BaP TEQ)	C6-C10			40	180
>C34-C40 5600 Total >C10-C40 Polyaromatic Hydrocarbons (mg/kg) Napthalene 4 Benzo-pyrene 0.7 Carcinogenic PAHs (as BaP TEQ)	>C10-C16			230	120
Total >C10-C40 Image: Constraint of the second se	>C16-C34				1300
Polyaromatic Hydrocarbons (mg/kg)4170Napthalene4170Benzo-pyrene0.7Carcinogenic PAHs (as BaP TEQ)100	>C34-C40				5600
(mg/kg)4170Napthalene4170Benzo-pyrene0.7Carcinogenic PAHs (as BaP TEQ)1	Total >C10-C40				
Napthalene 4 170 Benzo-pyrene 0.7 Carcinogenic PAHs (as BaP TEQ)	Polyaromatic Hydrocarbons				
Benzo-pyrene 0.7 Carcinogenic PAHs (as BaP TEQ) 0.7	(mg/kg)				
Carcinogenic PAHs (as BaP TEQ)	Napthalene			4	170
	Benzo-pyrene]			0.7
	Carcinogenic PAHs (as BaP TEQ)	1			
	Total PAH	1			

Table 7 - Investigation Criteria (Soil & Sediment)

(1) Health Investigation Levels for residential "A" land use (HIL A) as stated in Table 1A (1) of Schedule B (1) Guideline of Investigation Levels for Soil and Groundwater within the National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended and in force from 16 May 2013

(2) Ecological Investigation Levels (EILs) for Residential as stated in Tables 1B(1)-1B(5) of Schedule B (1) Guideline of Investigation Levels for Soil and Groundwater within the National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended and in force from 16 May 2013

(3) Health Screening Levels for clay in Tables 1A(3) of Schedule B (1) Guideline of Investigation Levels for Soil and Groundwater within the National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended and in force from 16 May 2013

(4) Ecological Screening Levels for clay in Tables 1B(6) of Schedule B (1) Guideline of Investigation Levels for Soil and Groundwater within the National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended and in force from 16 May 2013Ecological Screening levels

6.2 Relevant Environmental Media

Based on the site history, topography and soils, the relevant environmental media would generally be the surface soil on and around the existing, and previously demolished, structure locations. The soil surface is more likely to have been impacted by the former land use, and condition of the existing structures. The surface soil (topsoil) is likely to be disturbed during earthworks, and stripped for future use in landscaping preparation on the site. Surface soil might also be subject to movement due to erosion (rain) or wind (dust).

6.3 Investigation Criteria

The investigation criteria are based on the Health Investigation Level deemed relevant for the proposed land use in clay loam/clay soil found on the site. The Ecological Investigation Level applies to ecological receptors and is relevant in the upper 2m of the soil profile.

Groundwater was expected to be at greater than 5m depth near the elevated, northern part of the site. No groundwater investigation was completed during this preliminary investigation. If surface soil investigation recorded elevated PCoC then the groundwater regime would be further assessed and, if warranted, groundwater investigation including collection of representative samples would be implemented.

ASC NEPM (2013) recommends that "at the very least, the maximum and the 95% UCL of the arithmetic mean contaminant concentration should be compared to the relevant Tier 1 screening criteria" and also that" the results should also meet the following criteria:

- the standard deviation of the results should be less than 50% of the relevant investigation or screening level, and
- *no single value should exceed 250% of the relevant investigation or screening level*".

The 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than, or equal to, this value. The 95% UCL is a useful mechanism to account for uncertainty in whether the data set is large enough for the mean to provide a reliable measure of central tendency.

7 DATA QUALITY OBJECTIVES

• State the Problem

- Potential soil contamination associated with
 - concentrations of PCoC associated with the use and degradation of hazardous building materials (visible bonded ACM, and lead paint soil concentrations) exceeding the investigation criteria around existing and demolished structures
 - concentrations of PCoC associated with chemical/fuel storage/use exceeding the investigation criteria in the immediate surrounds of non-residential existing and demolished structures.
- Identify the Decisions/Goals
- Soil concentrations of PCoC to meet adopted investigation criteria based on future residential land use.
- Identify Information Inputs
- Soil organochlorine, organophosphate, metals and petroleum hydrocarbons concentrations. Visible bonded ACM fragments.
- Sampling depth and location [0-150mm based on NSW EPA (1997) for disturbed areas]
- Soil texture.
- Field measurements visual and olfactory
- Investigation criteria generally based on residential land use for clay (fine) soil (<2m depth) as shown in table 5
- Define the Study Boundaries
- The initial investigation area is generally confined to the existing structures on site on the northern portion of the property. There are currently multiple historic structures on the site located where future residential land use is proposed as shown in Appendix 2 and 3 in this report. Targeted sampling around each of the structures was conducted in Round 1.
- Additional targeted sampling was completed in Round 2 to help delineate identified lead-impacted areas and in the location of a later identified demolished farm storage shed location from historic aerial photographs.
- Develop the Analytical Approach
- If the results exceeded the investigation criteria, then the soil would require further investigation/remediation.
- If the results were below the investigation criteria, then the investigation area would be suitable for the proposed residential land use.

• Specify the Acceptance Criteria

- Investigation criteria 95% UCL < HIL & EIL, Standard Deviation <50% HIL & EIL, maximum <250% HIL & EIL. see table 5
- Investigation Criteria
- See table 5
- Optimise the Design
- Vary design based on site conditions and results.

8 SAMPLING AND ANALYSIS PLAN AND SAMPLING METHODOLOGY

8.1 Sampling, analysis and data quality objectives

The following sampling, analysis and data quality objectives have been adopted for this site investigation:

- To collect a minimum number of soil samples across the investigation area (AoC 1 and AoC 2) and surrounds (includes former shed location) to assess those concentrations of PCoC meet the soil investigation criteria for the proposed land use.
- To employ quality assurance when sampling, assessing and during evaluation of the subject soils.
- To ensure that decontamination techniques are applied during the sampling procedure and that no cross contamination of samples occurs.

8.2 Soil Sampling and Analysis Program

A sampling and analysis quality plan (SAQP), and a sampling and analysis program, were developed to assess the site for PCoC associated with:

- concentrations of PCoC associated with the use and degradation of hazardous building materials (visible bonded ACM, and lead paint soil concentrations) exceeding the investigation criteria around existing and demolished structures
- concentrations of PCoC associated with chemical/fuel storage/use exceeding the investigation criteria in the immediate surrounds of non-residential existing and demolished structures.

Round 1

A targeted sampling approach was adopted. Twenty two (22) primary soil samples plus 4 x QA/QC's were collected from the two AoC that were located around the two existing dwellings with their associated structures. Samples of potential bonded ACM were also collected.

Round 2

Twenty (20) primary soil samples plus 2 x QA/QC's were collected to help delineate the identified lead-impacted soil areas and to assess the later identified location of a demolished farm storage shed near dwelling no. 1 (south)

Surface soil sampling was adopted as any soil exposure would be to the surface soil. The NSW EPA (1995) recommends 0-150mm sampling interval for disturbed areas.

Round 1 sampling was completed on 5 August 2022, and Round 2 was completed on 5 September 2022 as shown in Appendix 13.

The following basic measures were undertaken by HMC Environmental Consulting during each sampling round to conform to the minimum standards for field quality assurance and quality control procedures for the samples collected:

- Soil sampling was undertaken by M. Tunks, H. Tunks, M. Flanagan and T. Richards of HMC Environmental Consulting, with experience in site contamination investigations.
- Clean, dedicated, stainless-steel trowels were used to collect samples from immediately below the root zone and detritus layer, where present, (0-150mm) using disposable nitrile gloves.

- The trowels were decontaminated before sampling by pressure cleaning (12V) thoroughly with clean water, scrubbing with Decon 90 cleanser, and finally re-rinsing with clean water.
- Field quality assurance and quality control (QA/QC) protocols implemented included details of collection and analysis of field duplicate and triplicate samples.
- Chain of custody documentation was completed.
- The laboratory results and quality assurance and quality control reports including a description of the analytical methods used and reporting for surrogates was also completed.

9 QUALITY ASSURANCE AND QUALITY CONTROL

Sampling was undertaken in accordance with the SAQP (see section 8).

Table 8 – Soil Quality Control Samples					
Primary Sample ID	Туре	Quality Control	Laboratory	Analytes	
		Sample ID			
	Duplicate	BHDUP1	ALS, Brisbane	Matals (Load)	
ВНЗА	Triplicate	BHTRIP1	ALS, Sydney	Metals (Lead)	
BH18A	Duplicate	BHDUP2	ALS, Brisbane		
рцтом	Triplicate	BHTRIP2	ALS, Sydney	OCPs, OPPs, Metals,	
ВНЗ9А	Duplicate	BHDUP3	ALS, Brisbane	BTEX, TPHs, PAHs	
	Triplicate	BHTRIP3	ALS, Sydney		

The laboratory results and quality control reports include a description of the analytical methods used and reporting for surrogates used by ALS Environmental.

|--|

Data quality	Criteria	Comment
indicator		
Precision		
Laboratory matrix	Limits set by the laboratory:	Generally all soil results within prescribed limits
duplicate relative	 Soil results <10 times the LOR: No limit 	
percentage	• Soil results between 10-20 times the LOR: RPD	
differences (RPDs)	must lie between 0-50%	
within criteria	 Soil results >20 times the LOR: RPD must lie between 0-30% 	
Field duplicate RPDs	In accordance with AS4482.1 (2005), RPD results	Generally all <50% RPD or less than 10 times the
within criteria	≥50% will be considered to exceed the data quality	LOR
	objectives (DQO) of the assessment. However,	
	based on industry best practice, RPD results will be	
	discounted if both sample results used to calculate	
	the RPD are below the laboratory's limit of	
	reporting (LOR) or less than 10 times the LOR.	
	Accuracy	
Matrix spike sample	Limits set by the laboratory:	Generally all results were between 70-130%
results reported	 Results to be between 70-130%. 	
with prescribed		
limits		
Surrogate spike	Limits set by the laboratory:	Surrogate spike sample results reported within
sample results	 Recoveries must lie between 50-150%. 	the prescribed limits.
reported with		
prescribed limits	- · · · · · · · · · · · · · · · · · · ·	
Laboratory method	Concentrations of targeted parameters should be	Laboratory method blanks reported with
blanks reported	below the laboratory's limit of reporting (LOR).	prescribed limits.
with prescribed		
limits		
All analysis NATA	Analysis to be completed by a NATA accredited	All analysis NATA accredited

accredited	laboratory.	
	Representativeness	
Samples delivered to laboratory within sample holding times, chilled and with correct preservative	Target temp <4°C. Samples to be submitted to the laboratory within the designated holding times. Different holding times exist for different parameters. Samples to meet the preservation requirements set by the laboratory.	Samples delivered to laboratory within sample holding times, chilled and with correct preservative
Required number of field duplicates and sample blanks taken	Intra and inter laboratory duplicates are to be collected at a ratio of one duplicate pair per 20 samples. One rinse blank and field blank to be collected per day as required. One trip blank to be collected per cooler where analysis of volatile compounds is proposed.	Required number of field duplicates and sample blanks taken Dedicated stainless steel trowels but rinsate collected prior to sampling to check HMC implement cleaning.
Sample blanks reported results below detection limits	Concentrations of targeted parameters to be below the laboratory's limit of reporting (LOR).	The sample blank results were below the LOR
Samples collected in accordance with regulatory and HMC procedures	Samples to be collected in general accordance with standard operating procedures (SOPs) which are based on applicable regulatory guidance and industry best practice.	Samples collected in accordance with regulatory and HMC procedures
	Comparability	
Same standard operation procedures (SOPs) applied during each sampling event	The same SOPs to be adopted for each sampling event.	Same standard operation procedures (SOPs) applied during each sampling event
LORs below the adopted assessment criteria	The laboratory's LOR is to be below the adopted assessment criteria.	LORs below the adopted assessment criteria
LORs below the adopted assessment criteria	The sampler is to be a Suitably Qualified Person (SQP)	SQP collected samples
Same type of sample preservation and analysis techniques	The same type of sample preservation and analysis techniques are to be applied to all samples. This information is to be provided within laboratory reports.	Same type of sample preservation and analysis techniques applied to all samples
•	Completeness	
All laboratory data reviewed and presented in the report (i.e. COCs, SRNs, COAs and QCRs)	All information provided by the laboratory is to be provided in the final report.	All laboratory data reviewed and presented in the report
All sample results reported	All sample results are to be reported and discussed.	All sample results reported
Sample blanks data reported	All sample blank data is to be reported.	Sample blanks not required
Relative percent differences (RPDs) calculated	RPDs to be calculated for all sets of field duplicates.	Relative percent differences (RPDs) calculated
Laboratory duplicates reported	All laboratory duplicate results are to be reported.	Laboratory duplicates/triplicates reported
NATA stamp on reports	NATA stamps to be shown on all laboratory reports.	NATA stamp on reports

10 FIELD AND ANALYTICAL RESULTS

10.1 Fieldwork

Strategic field sampling was conducted by experienced environmental scientists on 5 August 2022 (Round 1) and 5 September 2022 (Round 2).

Sampling	Primary	Location	LO – Sample Loca Depth (mm)	ID	Soil	Laboratory
Samping	Sample	Location	Deptil (illin)		Description	Program
	BH1A				Description	1105.011
	BH2A	– Dwelling No 2				
	BH3A					
	BH4A					
	BH5A	Outhouse/				
	BH6A	Laundry				Metals (Lead)
	BH7A	,				
	BH8A					
	BH9A	– Dwelling No 1				
	BH10A					
	BH11A			Dian		
	BH12A			Primary		
	BH13A	Garage				
	BH14A	1				
Round 1	BH15A		-			
Kouna 1	BH16A	Dairy Bales				OCPs, OPPs, Metals, BTEX, TPHs, PAHs
	BH17A					
	BH18A					IPITS, PAITS
	BH19A	– Shed – Meat Safe				
	BH20A				Moist,	
	BH21A				brown/yellow	
	BH22A	Weat Sale	0-150mm		brown, clay loam/light clay soil	
	BHDUP1	Dwolling No.2	-	Duplicate QA/QC		Motols (Lood)
	BHTRIP1	– Dwelling No 2		Triplicate QA/QC		Metals (Lead)
	BHDUP1	Dain/ Palac		Duplicate QA/QC		OCPs, OPPs,
	BHTRIP1	 Dairy Bales 		Triplicate QA/QC		Metals, BTEX, TPHs, PAHs
	BH23A					
	BH24A	Dwelling No 2				
	BH25A					
	BH26A		1			
	BH27A	Garage				
	BH28A					
Round 2	BH29A		1	Primary		Metals (Lead)
	BH30A	1				
	BH31A	1				
	BH32A	Dwelling No 1				
	BH33A	1				
	BH34A	1				

					
	BH35A				
	BH36A				
	BH37A	Demolished			
	BH38A				OCPs, OPPs,
	BH39A	farm storage shed			Metals, BTEX, TPHs, PAHs
	BH40A	Shea			11113, 1 All3
	BH8B	Duralling No.4	150-300mm		Metals (Lead)
	BH10B DV	Dwelling No 1			wietais (Leau)
	BHDUP3 Demolished	Demolished		Duplicate	OCPs, OPPs,
	впрога	farm storage	0-150mm	QA/QC	Metals, BTEX,
	BHTRIP3	shed		Triplicate	TPHs, PAHs
		Shea		QA/QC	11 113, 1 ATT3

A total of 42 primary surface soil samples (plus 6 x QA/QC) were recovered and placed in laboratory supplied glass jars. The primary samples, together with the QA/QC samples were transported to the HMC office for refrigerated storage prior to delivery to ALS Environmental laboratory for analysis for PCoC.

Refer to **Appendix 13** for the site plan and sampling locations.

10.2 Analytical Testing

Laboratory analytical services were provided by ALS Environmental, Brisbane & Sydney.

10.3 Soil Program

The initial sampling round (Round 1) included targeted sampling around all of the existing structures. Following a review of additional historic aerial photography, a second sampling round (Round 2) was completed, targeting a later identified demolished farm storage shed location, and to delineate identified lead-impacted soil areas.

Round 1:

A total of 22 primary samples were submitted for analysis.

Ten of the samples (surrounding the dwellings) were analyse for the following:

- Metals lead (Pb)
- Visible ACM

Twelve samples were analysed for the following:

- Organochlorine/organophosphorus pesticides
- Metals arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), mercury (Hg)
- Petroleum hydrocarbons Benzene, toluene, ethyl benzene, xylene (BTEX), volatile and semi-volatile Total Recoverable Hydrocarbons (C6-C40), Polyaromatic hydrocarbons (PAH) – identified non-residential structures only.
- Visible ACM

Round 2:

As generally only elevated lead (exceeding investigation criteria) had been identified on the site, in concentrations exceeding background levels, this PCoC was targeted. Further sampling around each of the hotspot locations were undertaken to help delineate the lead-impacted soil. Two samples were also collected at depth (150-300mm) at the two locations with the highest lead concentrations detected in Round 1 to assess the vertical extent of any lead-impacted soil. In total sixteen (16) additional samples were collected and analysed for lead concentrations.

Four locations around the later identified demolished farm storage shed location were also targeted for PCoC associated with the bulk storage of agrichemicals and fuel. The samples were analysed for the following:

• Organochlorine/organophosphorus pesticides

- Metals arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), mercury (Hg)
- Petroleum hydrocarbons Benzene, toluene, ethyl benzene, xylene (BTEX), volatile and semi-volatile Total Recoverable Hydrocarbons (C6-C40), Polyaromatic hydrocarbons (PAH)

10.4 Primary and Replicate Results

The laboratory analysis of the selected primary samples is summarised in Tables 11 & 12.

	Table 11 – Laborator	y Results Summ	ary – Round 1 (S	5 August 2022)	
Parameter	Number of primary samples	LOR (mg/kg)	Criteria Exceedances	Range (mg/kg)	Typical Background (Olszowy et al, 1995) mg/kg
METALS/METALLOIDS			1		
Arsenic	12	5	0	<5 – 6	5-53
Chromium (VI)	12	2	1	20 – 131	5-56
Copper	12	5	0	9 - 104	3-412
Nickel	12	2	0	8 – 55	5-38
Zinc	12	5	10	171 – 4970	5-92
Cadmium	12	1	0	<1 - 15	nd
Lead	22	5	6	27 – 2160	5-56
Mercury (inorganic)	12	0.1	0	< 0.1 - 0.9	nd
ORGANOCHLORINE/ORGAI	NOPHOSPHORUS				
Chlordane	12	0.05	0	<0.05	
Dieldrin + Aldrin	12	0.05	0	<0.05 - 0.17	
DDT+DDD+DDE	12	0.05	0	<0.05 – 0.06	
Heptachlor	12	0.05	0	<0.05	
Chlorpyrifos	12	0.05	0	<0.05	
Endosulfan	12	0.05	0	<0.05	
Endrin	12	0.05	0	<0.05	
BTEX					
Benzene (mg/kg)	12	0.2	0	<0.2	
Toluene (mg/kg)	12	0.5	0	<0.5	
Ethyl Benzene (mg/kg)	12	0.5	0	<0.5	
Total Xylenes	12	0.5	0	<0.5	
TOTAL PETROLEUM HYDRO	CARBONS				
C6-C10	12	10	0	<10	
>C10-C16	12	50	0	<50	
>C16-C34	12	100	0	<100 - 240	
>C34-C40	12	100	0	<100 - 120	
Total >C10-C40	12	50	0	<50 – 350	
POLYAROMATIC HYDROCA	RBONS				
Napthalene	12	0.5	0	<0.5	
Benzo-pyrene	12	0.5	2	<0.5 – 3.0	
Total PAH	12	0.5	0	<0.5 – 49.9	

able 11 – Laborator	v Results Summary	i = Round 1	(5 Διισμst 2022)

* **Bold** indicates a criteria exceedance

The Round 1 results for organochlorine, organophosphates and BTEX were generally all below the laboratory level of reporting (LOR). Single very low concentrations of dieldrin and DDE were recorded below investigation criteria. Generally, the metals were typical of background concentrations. A single elevated total chromium result was recorded at BH22A (131 mg/kg). The investigation criteria relates to the speciated chromium (VI) concentration and this speciated material would not normally be found associated with this former land use, in aerated surface soil.

Ten elevated zinc results were recorded which exceeded the EIL criteria of 270 mg/kg, ranging from 394 – 4970 mg/kg, however they were all below the HIL A criteria (7400 mg/kg). EIL would not generally be relevant to the proposed future mixed use development, with extensive earthworks proposed and topsoil stripped and stockpiled.

Petroleum hydrocarbon results were generally below the LOR, with several low concentrations of heavier fractions below the investigation criteria. Two samples (BH11A & BH16A) recorded elevated benzo-pyrene concentrations which exceeded the ESL criteria.

Lead results were generally exceeding background levels, and 6 samples exceeded both the total concentration for both the HIL A and two exceeded the EIL criteria. The highest concentration was 2160 mg/kg for BH10A.

	lable 12 – Laboratory i	Suits Suillian	y – Rouna 2 (5 5	eptember 2022)	-
Parameter	Number of primary samples	LOR (mg/kg)	Criteria Exceedances	Range (mg/kg)	Typical Background (Olszowy et al, 1995) mg/kg
METALS/METALLOIDS					
Arsenic	4	5	0	<5	5-53
Chromium	4	2	0	26 – 51	5-56
Copper	4	5	0	13 – 32	3-412
Nickel	4	2	0	11 – 18	5-38
Zinc	4	5	3	154 – 630	5-92
Cadmium	4	1	0	<1-3	nd
Lead	20	5	6	16 – 1750	5-56
Mercury (inorganic)	4	0.1	0	< 0.1 - 0.3	nd
ORGANOCHLORINE/ORGAI	NOPHOSPHORUS				
Chlordane	4	0.05	0	<0.05	
Dieldrin + Aldrin	4	0.05	0	<0.05	
DDT+DDD+DDE	4	0.05	0	<0.05	
Heptachlor	4	0.05	0	<0.05	
Chlorpyrifos	4	0.05	0	<0.05	
Endosulfan	4	0.05	0	<0.05	
Endrin	4	0.05	0	<0.05	
BTEX					
Benzene (mg/kg)	4	0.2	0	<0.2	
Toluene (mg/kg)	4	0.5	0	<0.5	
Ethyl Benzene (mg/kg)	4	0.5	0	<0.5	
Total Xylenes	4	0.5	0	<0.5	
TOTAL PETROLEUM HYDRO	CARBONS				
C6-C10	4	10	0	<10	
>C10-C16	4	50	0	<50	
>C16-C34	4	100	0	<100	
>C34-C40	4	100	0	<100	
Total >C10-C40	4	50	0	<50	
POLYAROMATIC HYDROCA	RBONS				
Napthalene	4	0.5	0	<0.5	
Benzo-pyrene	4	0.5	0	<0.5	
Total PAH	4	0.5	0	<0.5	

Table 12 – Laboratory Results Summary – Round 2 (5 September 2022)

* Bold indicates a criteria exceedance

The round 2 results recorded six elevated lead results above the HIL A criteria. Three zinc results exceeded the EIL criteria. All organochlorine, organophosphates and petroleum hydrocarbons were below the LOR and, therefore, below the investigation criteria.

10.5 QA/QC Laboratory Data Review

10.5.1 Relative percent difference (RPD)

The Round 1 results show generally correlation between the primary samples (BH3A & BH18A) and the field replicate (BHDUP1 & BHDUP2). The results also show good correlation between the primary samples (BH3A & BH18A) and the triplicates (BHTRIP1 & BHTRIP2) sample.

The Round 2 results show good correlation between the primary sample (BH39A) and the field replication (BHDUP3) and triplicate (BHTRIP3).

10.5.2 Statistical Analysis

Generally, all PCoC results (total concentrations) for the investigation area were below the investigation criteria.

There were two elevated concentrations of benzo-pyrene detected which exceeded the ESL criteria (0.7 mg/kg); however, there is no HSL criteria for this contaminant.

Ten samples detected elevated concentrations of zinc which exceeded the EIL criteria (270 mg/kg); however, they were all still significantly below the HIL A investigation criteria (7400 mg/kg).

Elevated lead concentrations were detected across the site. Twelve (12) of the 42 samples exceeded the HIL A (300 mg/kg) investigation criteria and two samples exceeded the EIL criteria (1100 mg/kg) with the exceedances ranging from 320 - 2160 mg/kg.

The statistical analysis of the arsenic results were calculated against the HIL A criteria using the ProUCL 5.1 software. The results were:

Statistic	Lead Result	Criteria (HIL A)	Complies
95% UCL	614 mg/kg	300 mg/kg	NO
Standard Deviation	502 mg/kg	150 mg/kg	NO
Maximum	2160 mg/kg	750 mg/kg	NO

10.6 Soil Investigation Conclusions

The Soil and Analysis Quality Plan was implemented, and generally all organochlorine and organophosphorus, petroleum hydrocarbons, were below the LOR and, therefore, below the investigation criteria. There were low concentrations in the other metals results detected in the investigation area, however, all results were generally below the investigation criteria, and typical of background concentrations.

Very low concentrations of dieldrin and DDE in a single sample were recorded below investigation criteria. Generally, the metals were typical of background concentrations. A single elevated total chromium result was recorded at BH22A (131 mg/kg). The investigation criteria relates to the speciated chromium (VI) concentration and this speciated material would not normally be found associated with this former land use, in aerated surface soil.

The lead results returned elevated concentrations in twelve (12) samples which exceeded the investigation criteria. Targeted sampling in Round 2 did not completely delineate the lead-impacted soil in all locations, however this would not be required in this early Planning Proposal stage. Further investigation would be required for any future development application

The rinsate samples (BHRS1 & BHRS2) recorded results all below the LOR and, therefore, were not indicative of cross-contamination.

11 ASBESTOS INVESTIGATION

During the detailed site inspection, potential bonded ACM was identified in the eaves soffit, gable ends and internal linings to the structures, particularly the existing dwellings. Three bulk physical samples (suspected

bonded ACM) were collected from the soil surface and on a concrete slab floor, and sent to ALS Laboratory for identification, two from Dwelling No 2 and one from an outbuilding near Dwelling No 1. All three samples returned a positive identification for asbestos (Chrysotile – White asbestos). Prior to the demolition of these structures, a hazardous waste investigation including intrusive investigation, by suitably qualified and Safework NSW accredited persons would be required. Any identified hazardous material would be removed by a licensed demolition contractor in accordance with Safework NSW regulations prior to further demolition occurring.

12 CONCEPTUAL SITE MODEL

POTENTIAL SOURCE	PATHWAY	EXPOSURE ROUTE	RECEPTOR	PATHWAY COMPLETE	
Potential soil	Surface water runoff	Chemical/fuel/oil/sediment entering dam/local water ways	Ecological receptors	YES	
contamination from historic hazardous building materials and agrichemical storage/mixing areas associated	Exposed surface soil Atmospheric dispersion	Dermal contact to exposed soil during earthworks, dwelling occupation, and recreational use Inhalation of dust exposed during earthworks and in exposed bare soil areas	Site worker, Occupier, Visitor	Total lead soil concentrations results exceeded the investigation criteria for the potential residential land use	
with existing and demolished	Home grown produce	Consumption of home grown produce	Occupier/Visitor	land use. Bonded ACM fragments recorded	
structures	Leaching to groundwater	Groundwater movement off-site to beneficial users or ecological receptors	Beneficial users/Ecological receptor	fragments recorded around buildings	

13 CONCLUSIONS AND RECOMMENDATIONS

The Preliminary Site Investigation conclusions are based on the information described in this report and Appendices and should be read in conjunction with the complete report, including Section 14 Limitations.

A Planning Proposal for the rural landholding located at 1055 Bruxner Highway, Goonellabah NSW, is proposed to amend the *Lismore Local Environmental Plan 2012* (LLEP) to enable mixed use development including residential, commercial, industrial and public open space on the land. A Preliminary Site Investigation (PSI), including a desktop assessment of available information, and a detailed site inspection, indicated the property was used as a dairy and for cattle grazing since at least prior to 1942. There are a number of existing structures and a demolished structure location, found on the northern part of the site, however, which given their apparent age, potentially contain historic hazardous building materials. Due to their dilapidated state and weathering, these materials may have caused contamination to the surrounding soils. The non-residential structures may also have been associated with the storage/mixing/spillage of agrichemicals and fuel.

A Soil and Analysis Quality Plan was prepared, and implemented, to assess total soil concentrations of potential contaminants of concern including pesticides, metals and petroleum hydrocarbons, in the immediate surrounds of the structures. Laboratory results recorded generally all organochlorine and organophosphorus chemicals, and petroleum hydrocarbons, below the laboratory level of reporting (LOR) and, therefore, below the investigation criteria. Other metal results were typical of background levels. A single total chromium result, exceeded the speciated chromium (VI) criteria, however, it is unlikely chromium (VI) would be associated with this land use.

Elevated lead results were recorded in a number of locations across the site which exceeded the investigation criteria. Although additional soil investigation delineated some of the locations additional future investigation would be required prior to any remediation associated with a development application.

The identified lead-impacted soil and bonded asbestos containing material is located in surface soil around the existing structures on the northern part of the site, and any future remediation of the small areas of concern would be able to be managed effectively, with remediation options including reinterment on site, or removal off-site to an approved facility.

Based on the information presented, in relation to potential site contamination associated with the current and former land use, the proposed Planning Proposal site, located on Lot 42 DP 868366 & Lot 1 DP 9576771055, 1055 Bruxner Highway, Goonellabah NSW, as shown in Appendix 2 & 3 of this report, is considered suitable for the proposed future mixed use development subject to:

- 3. Prior to the submission of a development application for development in the area shown as AoC 1 and AoC 2 in this report, a Detailed Site Investigation is to be prepared by a suitably qualified environmental consultant to further delineate the potential contaminants of concern identified in and around the existing dwellings and associated structures.
- 4. Following the preparation of the Detailed Site Investigation in 1 above, a Remedial Action Plan is to be prepared providing details on required remediation and validation of lead-impacted soil and other identified potential contaminants of concern.

14 LIMITATIONS

Any conclusions presented in this report are relevant to the site condition at the time of inspection and legislation enacted as at date of this report. Actions or changes to the site after time of inspection or in the future will void this report as will changes in relevant legislation.

The findings of this report are based on the objectives and scope of work outlined in Section 1. HMC Environmental has performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental assessment profession. No warranties or guarantees expressed or implied, are given. This report does not comment on any regulatory issues arising from the findings, for which a legal opinion should be sought. This report relates only to the objectives and scope of work stated and does not relate to any other works undertaken for the client. The report and conclusions are based on the information obtained at the time of the assessment.

The site history and associated uses, areas of use, and potential contaminants were determined based on the activities described in the scope of work. Additional site information held by the client, regulatory authorities or in the public domain, which was not provided to HMC Environmental or was not sourced by HMC Environmental under the scope of work, may identify additional uses, areas of use and/or potential contaminants. The information sources referenced have been used to determine the site history.

Whilst HMC Environmental has used reasonable care to avoid reliance on data and information that is inaccurate and unsuitable, HMC Environmental is not able to verify the accuracy or completeness of all information and data made available. Further chemicals or categories of chemicals may exist at the sites, which were not identified in the site history, and which may not be expected at the site. The absence of any identified hazardous or toxic materials on the subject land should not be interpreted as a warranty or guarantee that such materials do not exist on the site. If additional certainty is required, additional site history or desktop studies, or environmental sampling and analysis should be commissioned.

The results of this assessment are based upon site inspections and fieldwork conducted by HMC Environmental personnel and information provided by the client. All conclusions regarding the property area are the professional opinions of the HMC Environmental personnel involved with the project, subject to the qualifications made above. HMC Environmental assume no responsibility or liability for errors in any data obtained from regulatory agencies, information from sources outside of HMC Environmental, or developments resulting from situations outside the scope of this project.

15 SIGNATURE

This report has been prepared by Mark Tunks of HMC Environmental Consulting, a suitably qualified environmental consultant, in accordance with the NSW EPA (2020) *Consultants reporting on contaminated land – Contaminated land guidelines*. Note that HMC Environmental Consulting holds current Professional Indemnity Insurance to 4th August 2023.

Mark Tunks Principal 30 <u>September 2022</u> Completion Date

16 REFERENCES

Australian Standard AS4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil Part 1 - Non volatile and semi volatile compounds; and Australian Standard AS 4482.2-2005 Guide to the sampling and investigation of potentially contaminated soil Part 1 - Volatile and semi volatile compounds.

AS 2005, AS4482.1-2005: Guide to the Investigation and Sampling of Sites with Potentially Contaminated soil -Part 1: Non-volatile and semi-volatile compounds, Standards Australia, Sydney; available at <u>www.standards.orq.au</u>

AS 1999, AS4482.2-1999: Guide to the Sampling and Investigation of Potentially Contaminated Soil - Part 2: Volatile substances, Standards Australia, Sydney; available at <u>www.standards.orq.au</u>

NSW EPA 1995, Contaminated Sites: Sampling Design Guidelines, Environment Protection Authority, Sydney

NSW EPA, 1997, *Contaminated Sites: Guidelines for Assessing Banana Plantation Sites*. Environment Protection Authority, Sydney

NSW EPA 2020 Consultants reporting on contaminated land – Contaminated land guidelines

NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Measure 1999 Schedule B (1) Guideline on the Investigation Levels for Soil and Groundwater, National Environment Protection Council Service Corporation, as amended 16 May 2013

Olszowy, H., Torr, P., and Imray, P., (1983) *Trace element concentrations in soils from rural and urban areas of Australia. Contaminated Site Monograph Series 4*. South Australian Health Commission, Adelaide.

17 GLOSSARY

Added contaminant limit (ACL) is the added concentration of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values will be required. ACL values are generated in the process of deriving ecological investigation levels (EILs).

Ambient background concentration (ABC) of a contaminant is the soil concentration in a specified locality that is the sum of the naturally occurring background and the contaminant levels that have been introduced from diffuse or non-point sources by general anthropogenic activity not attributable to industrial, commercial or agricultural activities.

An **area of ecological significance** is one where the planning provisions or land use designation is for the primary intention of conserving and protecting the natural environment. This would include national parks, state parks, and wilderness areas and designated conservation areas.

Bioavailability is a generic term defined as the fraction of a contaminant that is absorbed into the body following dermal contact, ingestion or inhalation.

Bonded asbestos-cement-material (bonded ACM) comprises bonded asbestos containing material which is in sound condition (although possibly broken or fragmented), and is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected as it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and potential for fibre release.

Conceptual site model (CSM) is a description of a site including the environmental setting, geological, hydrogeological and soil characteristics together with the nature and distribution of contaminants. Potentially exposed populations and exposure pathways are identified. Presentation is usually graphical or tabular with accompanying explanatory text.

Contamination means the condition of land or water where any chemical substance or waste has been added as a direct or indirect result of human activity at above background level and represents, or potentially represents, an adverse health or environmental impact.

Ecological investigation levels (EILs) are the concentrations of contaminants above which further appropriate investigation and evaluation will be required. EILs depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2 m of soil. EILs may also be referred to as soil quality guidelines in Schedules B5b and B5c.

Health investigation levels (HILs) are the concentrations of a contaminant above which further appropriate investigation and evaluation will be required. HILs are generic to all soil types and generally apply to the top 3 m of soil.

Health risk assessment (HRA) is the process of estimating the potential impact of a chemical, biological or physical agent on a specified human population system under a specific set of conditions.

Investigation levels and **screening levels** are the concentrations of a contaminant above which further appropriate investigation and evaluation will be required. Investigation and screening levels provide the basis of Tier 1 risk assessment.

Multiple-lines-of-evidence approach is the process for evaluating and integrating information from different sources of data and uses best professional judgement to assess the consistency and plausibility of the conclusions which can be drawn.

Risk assessment is the process of estimating the potential impact of a chemical, physical, microbiological or psychosocial hazard on a specified human population or ecological system under a specific set of conditions and for a certain timeframe.

Risk management is a decision-making process involving consideration of political, social, economic and technical factors with relevant risk assessment information relating to a hazard to determine an appropriate course of action.

Screening is the process of comparison of site data to screening criteria to obtain a rapid assessment of contaminants of potential concern.

Tier 1 assessment is a risk-based analysis comparing site data with investigation and screening levels for various land uses to determine the need for further assessment or development of an appropriate management strategy.



Figure 1 - Surrounding Area - Arrow pointing to investigation area within Goonellabah, NSW (Source: Nearmap 2022)

Appendix 2 Property Boundaries

Figure 2 – Property boundaries for the subject site (Source: Nearmap 2022)

Appendix 3 Illustrative Concept Plan

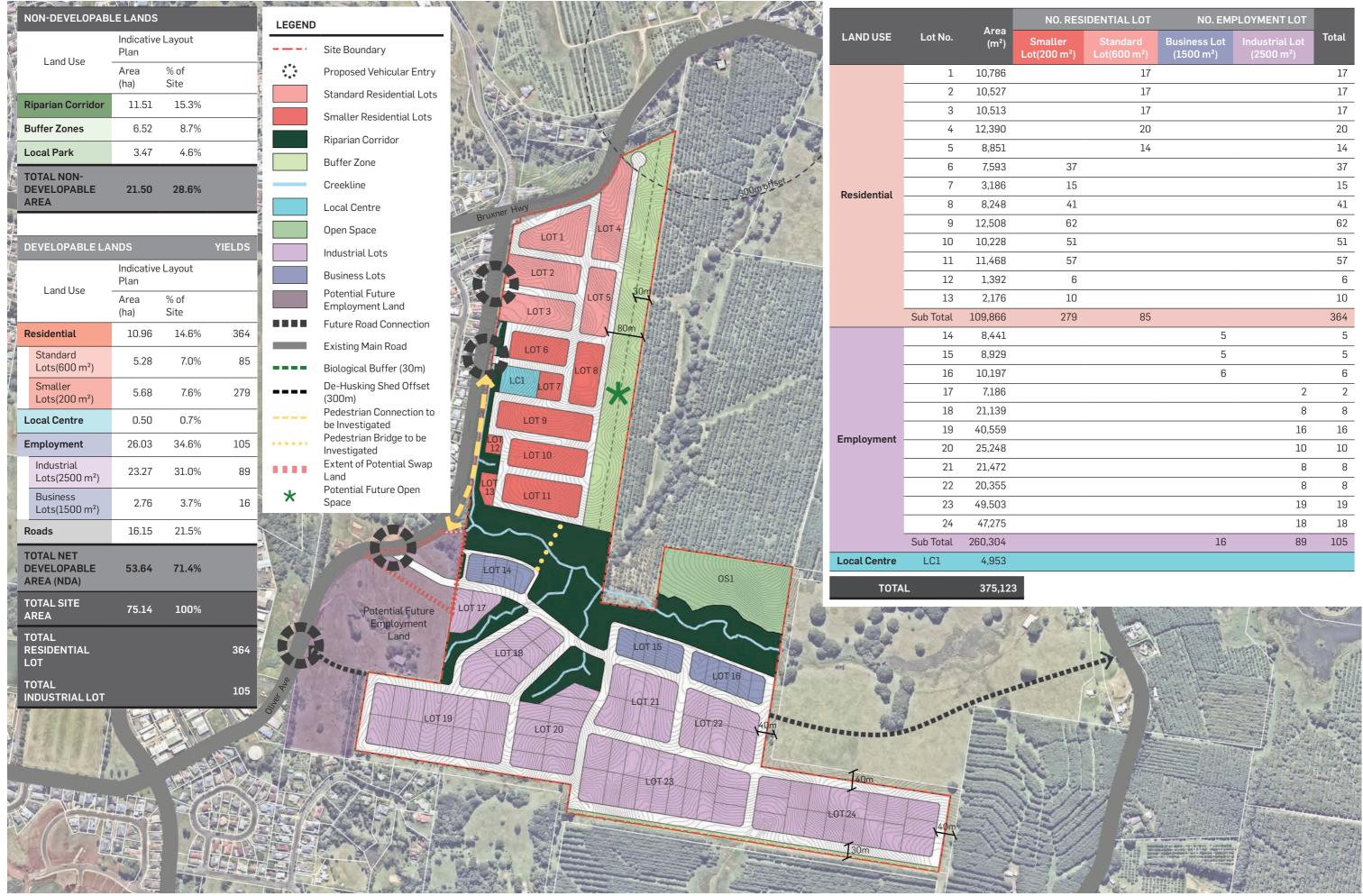
(SEE FOLLOWING PAGE)

						() - Mary		
			and the second	Nantin I		4 J	Mar Sta	
			BOA.	A BARRAN				: . Th
							Jack h	38 0 1
			Carlos a				275112	N BA
		E ALTRO						
						300m offset	Re Wa	and the second s
8 at 1			Bruxner H	IWY P		1 2 3	Jane -	
HAP			Bruxner	LOT1	LOT 4			
			ATTELES	LOT 2			and the second	
			A THEFT		LOT 5 30m			7 13
BUURK			FRANK	LOT 3				
	and St			LOT 6	80m			
	Hold Hold			LUI8	LOT 8			
				LC1 LOT 7	- I III 3			Le l'
LEGEND)			LOT 9				
	Site Boundary		John Mark				1 Jacomente	
***	Proposed Vehicular Entry			LOT 10				
	Standard Residential Lots	2 3						
8	Smaller Residential Lots		N-R	13 LOT 11				
5	Riparian Corridor		SAAS	\sim				
	Buffer Zone		1 million	\sim λ	1970 P			
	Creekline		The	LOT 14	\sim	OSI		
	Local Centre		anna anna				1 2 44	
	Open Space		Potential Future Employment	LOT 17	5~~~	~	0. 200.00	
	Industrial Lots		Land	LOT 18	LOT 15	m		A A A A
	Business Lots		ANNIN THE STREET	LUT AO		LOT 16		
	Potential Future Employment Land	T Ave						
	Future Road Connection	and and a second	LOT 19		LOT 21			REAL PROPERTY
	Existing Main Road		JANA THE	LOT 20	124H	LOT 22 40m	ABBERRENESSER STR.	
<u>N</u>			A CAN DEAD		H MATTER CONTRACTOR			
1	Biological Buffer (30m)	XOTAT						
	Biological Buffer (30m) De-Husking Shed Offset (300m)				LOT 23		T40m	
>	Biological Buffer (30m) De-Husking Shed Offset (300m) Pedestrian Connection to be Investigated			2446	L0T 23			
	Biological Buffer (30m) De-Husking Shed Offset (300m) Pedestrian Connection to be Investigated Pedestrian Bridge to be				L0T23		J40m LOT 24	40m
>	Biological Buffer (30m) De-Husking Shed Offset (300m) Pedestrian Connection to be Investigated				10723			

URBIS

OLIVER AVE, LISMORE GOONELLABAH ILLUSTRATIVE CONCEPT PLAN

DISCLAIMER:


This plan is conceptual and is for discussion purposes only and is subject to further detail study, Council approval, engineering input, and survey. Cadastral boundaries, areas and dimensions are approximate only. Written figured dimensions shall take preference to scaled dimensions.

200

DATE: 10 AUG 2022 JOB NO: P0040564

OLIVER AVE, LISMORE GOONELLABAH ILLUSTRATIVE CONCEPT PLAN

DISCLAIMER:

This plan is conceptual and is for discussion purposes only and is subject to further detail study, Council approval, engineering input, and survey. Cadastral boundaries, areas and dimensions are approximate only. Written figured dimensions shall take preference to scaled dimensions.

NO. RESIDENTIAL LOT NO. EMPLOYMENT LOT					
naller 200 m²)	Standard Lot(600 m²)	Business Lot (1500 m²)	Industrial Lot (2500 m²)	Total	
	17			17	
	17			17	
	17			17	
	20			20	
	14			14	
37				37	
15				15	
41				41	
62				62	
51				51	
57				57	
6				6	
10				10	
279	85			364	
		5		5	
		5		5	
		6		6	
			2	2	
			8	8	
			16	16	
			10	10	
			8	8	
			8	8	
			19	19	
			18	18	
		16	89	105	

0

DATE: 10 AUG 2022 JOB NO: P0040564

Appendix 4 Geology and Soil Landscape

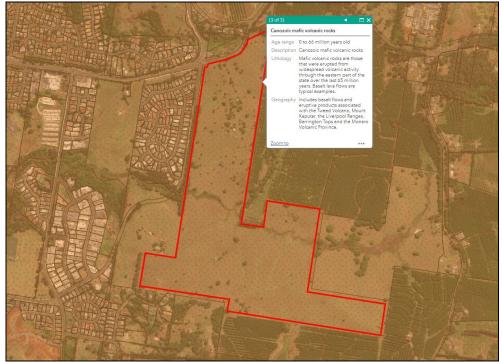


Figure 3 - Geology Map (Source: HMC GIS)

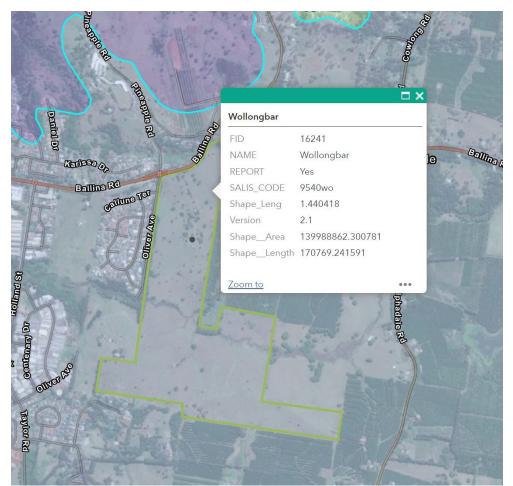


Figure 4 - Soil Landscape (Wollongbar Map (http://www.environment.nsw.gov.au/eSpadeWebApp/)

Appendix 5 Cattle Dip Sites

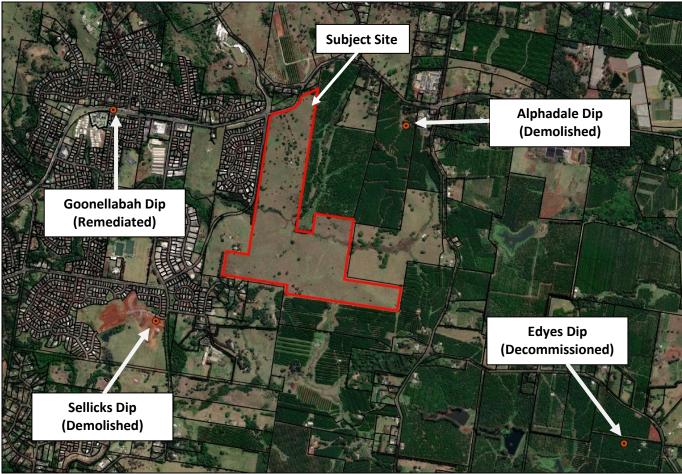
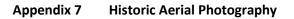



Figure 5 - Cattle Dip Sites (Source: HMC GIS)

Appendix 6 Licensed Groundwater Bores

Figure 6 – Groundwater Bore Locations (Source: http://allwaterdata.water.nsw.gov.au/water.stm)

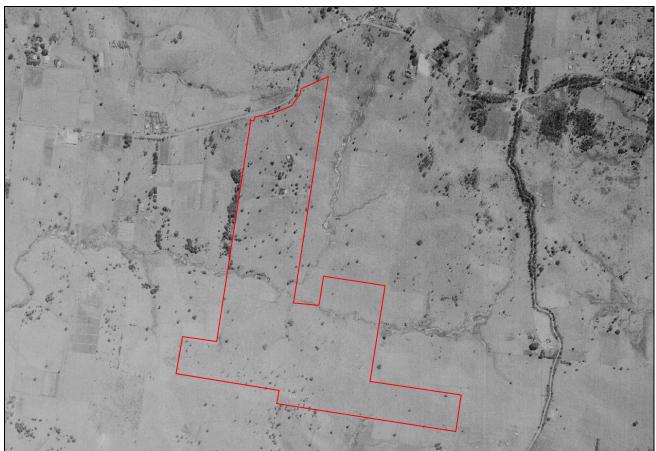


Figure 7 - Historical Aerial 1958 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb



Figure 8 - Historical Aerial 1971 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb

Figure 9 – Historical Aerial 1979 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb

Figure 10 – Historical Aerial 1987 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb

Figure 11 – Historical Aerial 1991 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb



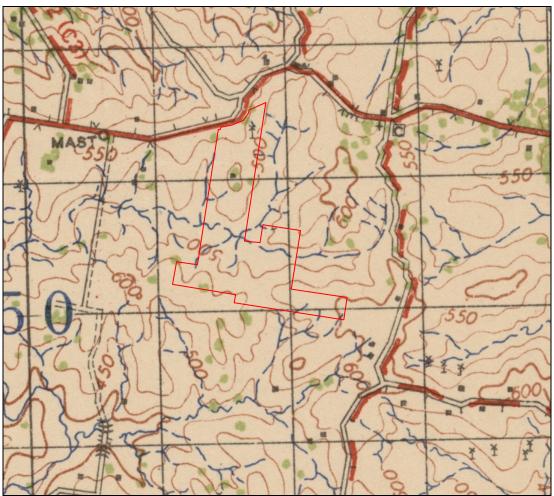
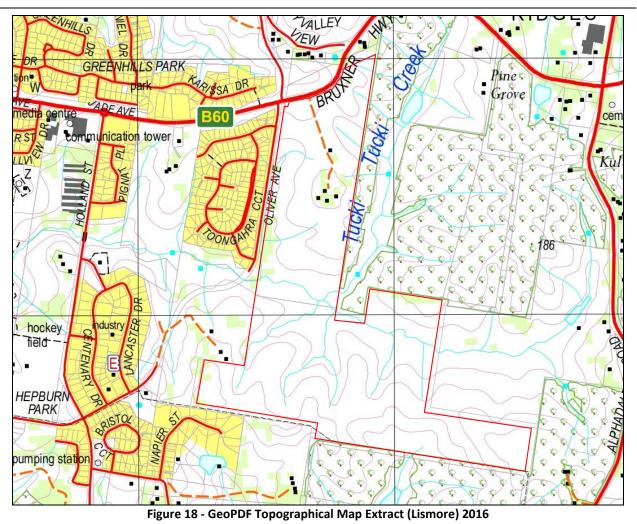
Figure 12 – Historical Aerial 1997 (NSW Historic imagery viewer) https://portal.spatial.nsw.gov.au/portal/apps/webappviewer/index.html?id=f7c215b873864d44bccddda8075238cb

Figure 13 - Historical Aerial 2003 (Google Earth)

Figure 14 – Historical Aerial 2004 (Google Earth)

Figure 15 – Current Aerial 2022 (Nearmap)

Appendix 8 Historic Topographical Maps

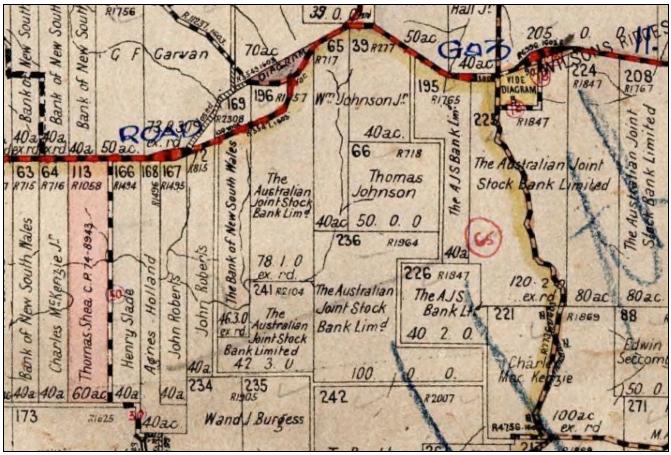

Figure 16 - Topographical Extract (Lismore) 1942

Figure 17 - Topographical Extract (Lismore) 2011

Appendix 9 Historic Parish Maps

Figure 19 - Parish Map Extract (1914)

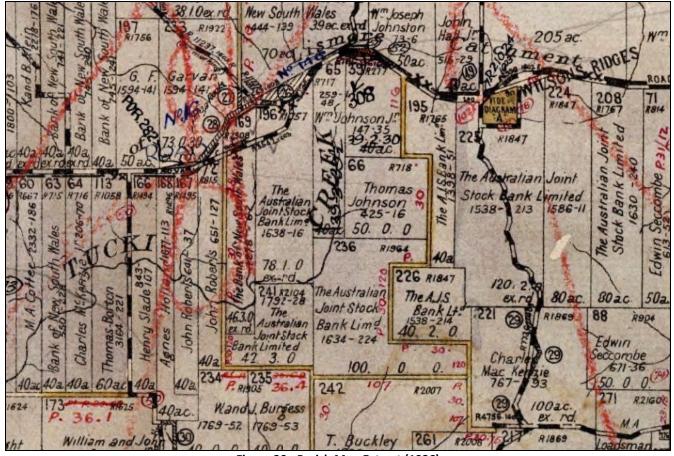


Figure 20 - Parish Map Extract (1926)

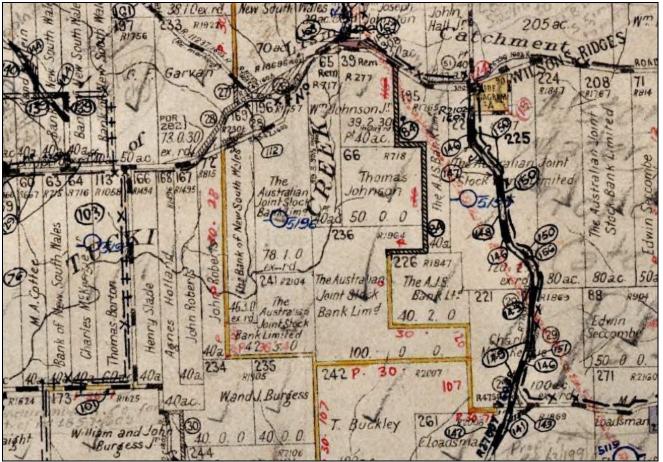


Figure 21 - Parish Map Extract (1940)

Appendix 10 Current LLEP 2014 Zone Map

Figure 22 – NSW Legislation Zone Plan

(Source: https://www.planningportal.nsw.gov.au/spatialviewer/#/find-a-property/address)

Appendix 11 Photographic Log

Photo	Date	
No. 1	05/08/2022	
Descriptio	n:	
	erlooking the	
existing Dv	velling No 1	
(southern	dwelling)	

hoto	Date	
No. 2	05/08/2022	
Descriptior	n:	
	rlooking the	
existing gai	rage adjacent	
to Dwelling		
-		

Photo	Date						
No. 3	05/08/2022						
Description	Description:						
View S over	View S overlooking the						
existing dia	ry bales to						
the southea	the southeast of						
Dwelling No	welling No 1.						

Photo	Date	A A A A A A A A A A A A A A A A A A A
No. 4	05/08/2022	
Descriptio	on:	
View NE o	overlooking	
the dilapi	dated shed to	
	of Dwelling	
No1.		
		and the second

PhotoDateNo. 505/08/2022Description:View NE overlookingthe former meat safe tothe west of Dwelling No1.

Photo	Date					
No. 6	05/09/2022					
Description	ו:					
View NE ov	erlooking a					
stockpile of building						
material or	n the site of					
the previou	usly					
demolished	d storeshed,					
to the sout	hwest of					
Dwelling N	o1.					

Photo	Date
lo. 7	05/08/2022
) escripti	
View SE d	overlooking
	ing Dwelling
No 2 (noi	
dwelling)	
Photo	Date

No. 8 05/08/2022 Description: View NW overlooking the detached outhouse/laundry behind Dwelling No 2.

PhotoDateNo. 905/09/2022Description:DDrone p⊢otooverlooking DwellingNo 1 and thesurroundingstructures.Structures

Photo Date No. 10 05/09/202	22	
Description:		100 15
Drone photo – View		2419
to the north toward		
the Bruxner Highway	γ, 277	AN AN
with the structures		
and vehicle access		
visible.		
		me up
		1 42
		100
		X
		STE 1
		See.
	and the second	

Photo	Date
No. 11	05/09/2022
Descripti	ion:
Drone Pł	noto – View
to the so	uth
overlook	ing the
undulati	ng property
which is	currently
used for	cattle
grazing. ⁻	The Tucki
Tucki Cre	ek is visible
transecti	ng the
property	

Appendix 12 Site Plan – Investigation Area – Areas of concern

(Next Page)

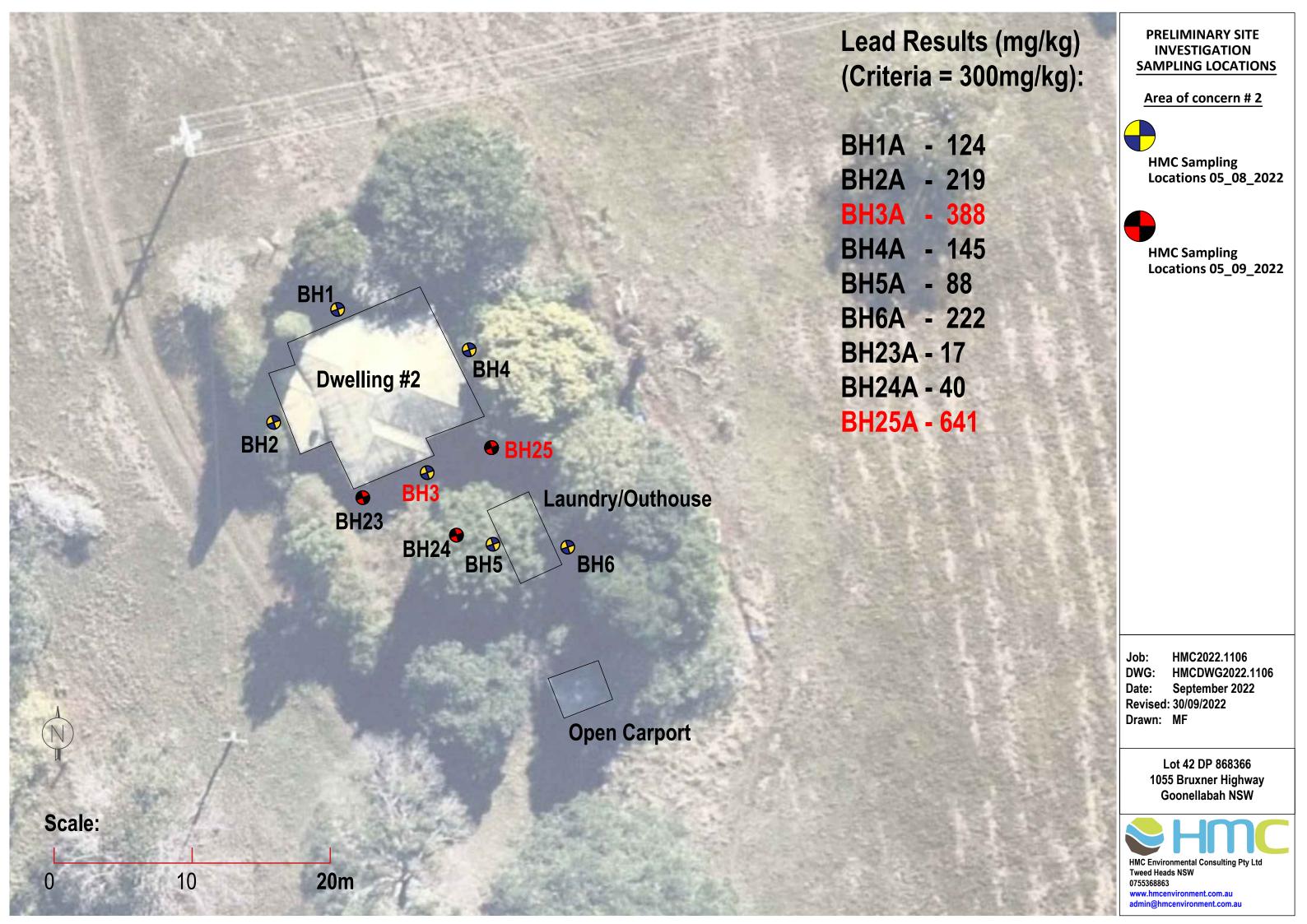
Area of concern # 2

Area of concern # 1

PRELIMINARY SITE INVESTIGATION SAMPLING LOCATIONS

Areas of concern

Job: HMC2022.1106 DWG: HMCDWG2022.1106 Date: September 2022 Revised: 30/09/2022 Drawn: MF


> Lot 42 DP 868366 1055 Bruxner Highway Goonellabah NSW

HMC Environmental Consulting Pty Ltd Tweed Heads NSW 0755368863 www.hmcenvironment.com.au admin@hmcenvironment.com.au

Appendix 13 Sampling Locations

(Next Page)

Appendix 14 Laboratory Results Summary & RPD

Table 13 - Laboratory Results – Round 1 (05.08.2022)

Sample ID:	BH1A	BH2A	BH3A	BH4A	BH5A	BH6A	BH7A	BH8A	BH9A	BH10A	BHDUP1	BHTRIP1
Metals/Metalloids (mg/kg)												
Lead	124	219	388	145	88	222	626	1640	320	2160	337	353
Sample ID:	BH11A	BH12A	BH13A	BH14A	BH15A	BH16A	BH17A	BH18A	BH19A	BH20A	BH21A	BH22A
Metals/Metalloids (mg/kg)												
Arsenic	<5	<5	<5	<5	<5	<5	<5	<5	<5	5	<5	6
Chromium (total)	38	40	37	47	34	40	34	39	43	20	43	131
Copper	52	19	24	17	24	17	11	9	20	49	18	104
Nickel	13	13	10	13	15	10	8	9	12	12	13	55
Zinc	1380	1200	394	2620	4880	171	562	213	493	2750	2130	4970
Cadmium	<1	<1	<1	<1	15	<1	<1	<1	<1	5	4	5
Lead	733	62	45	82	131	74	85	27	46	143	127	203
Mercury (inorganic)	0.3	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.9
Organochlorine/Organophosphoru	s (mg/kg)			-							<u>.</u>	
Chlordane	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin + Aldrin	<0.05	<0.05	0.17	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DDT+DDD+DDE	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	0.06
Heptachlor	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Endosulfan	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Endrin	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
BTEX (mg/kg)			•	•		•			•	•		
Benzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Xylenes	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Petroleum Hydrocarbons (mg	;/kg)			•								
Naphthalene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo-pyrene	0.8	<0.5	<0.5	<0.5	<0.5	3.0	<0.5	<0.5	<0.5	<0.5	<0.5	0.6
Total PAH	7.2	<0.5	<0.5	<0.5	<0.5	49.9	<0.5	<0.5	<0.5	<0.5	<0.5	5.3
Polyaromatic Hydrocarbons (mg/k	g)		•	•	•	•		•	•	•		
C6-C10 (F1)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
>C10-16 (F2)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
>C16-C34	200	<100	<100	<100	<100	170	<100	<100	<100	<100	<100	240
>C34-C40	120	<100	<100	<100	<100	120	<100	<100	<100	<100	<100	110

Preliminary Site Investigation HMC2022.961.02

Total >C10-C40	220	
	320	<50
Sample ID:	BHDUP2	BHTRIP2
Metals/Metalloids (mg/kg)		-r
Arsenic	<5 38	<5 52
Chromium (total)		
Copper Nickel	12 9	14 18
Zinc		270
Cadmium	374	<1
	50	33
Lead	<0.1	<0.1
Mercurγ (inorganic) Organochlorine/Organophosphorus		<0.1
Chlordane		-0.05
Dieldrin + Aldrin	<0.05	<0.05
DDT+DDD+DDE	<0.05	<0.05
Heptachlor	<0.05	<0.05
Chlorpyrifos	<0.05	<0.05
Endosulfan	<0.05	<0.05
Endrin	< 0.05	< 0.05
	<0.05	<0.05
BTEX (mg/kg)	-0.2	
Benzene	<0.2	<0.2
Toluene	<0.5	<0.5
Ethylbenzene	<0.5	<0.5
Total Xylenes Total Petroleum Hydrocarbons (mg/	<0.5	<0.5
Naphthalene		-0 F
-	<0.5	<0.5
Benzo-pyrene Total PAH	<0.5	<0.5
	<0.5	<0.5
Polyaromatic Hydrocarbons (mg/kg) C6-C10 (F1)		.10
	<10	<10
>C10-16 (F2)	<50	<50
>C16-C34 >C34-C40	<100 <100	<100 <100
Total >C10-C40	<100	<100
10(a) >C10-C40	<50	<50

Table 14 - Laboratory Results – Round 2 (05.09.2022)

Sample ID:	BH8B	BH10B	BH23A	BH24A	BH25A	BH26A	BH27A	BH28A	BH29A	BH30A	BH31A	BH32
Metals/Metalloids (mg/kg)			1		1							
Lead	146	783	17	40	641	69	46	84	224	177	885	35
Sample ID:	BH33A	BH34A	BH35A	BH36A	BH37A	BH38A	BH39A	BH40A	BHDUP3	BHTRIP3		•
Metals/Metalloids (mg/kg)												
Arsenic					<5	<5	<5	<5	<5	<5		
Chromium (total)					39	43	26	51	24	43		
Copper					32	22	21	13	30	30		
Nickel					12	11	18	13	23	24		
Zinc					630	446	154	562	133	192		
Cadmium					3	<1	<1	1	<1	<1		
Lead	1120	720	1750	176	162	106	16	34	24	36		
Mercury (inorganic)					0.3	<0.1	<0.1	<0.1	<0.1	<0.1		
Organochlorine/Organophosphorus	(mg/kg)											
Chlordane					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Dieldrin + Aldrin					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
DDT+DDD+DDE					<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05		
Heptachlor					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Chlorpyrifos					<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05		
Endosulfan					< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05		
Endrin					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
BTEX (mg/kg)												
Benzene					<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	1				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	
Total Xylenes	1				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Total Petroleum Hydrocarbons (mg/	kg)											
Naphthalene					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Benzo-pyrene	1				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Total PAH					<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Polyaromatic Hydrocarbons (mg/kg)												
C6-C10 (F1)					<10	<10	<10	<10	<10	<10		
>C10-16 (F2)]				<50	<50	<50	<50	<50	<50		
>C16-C34					<100	<100	<100	<100	<100	<100		
>C34-C40					<100	<100	<100	<100	<100	<100		
Total >C10-C40					<50	<50	<50	<50	<50	<50		

Table 15 - Relative Percentage Difference (RPD%)

	BH3A	BHDUP1	Mean	RPD%	BH3A	BHTRIP1	Mean	RPD%
Metals/Metalloids (mg/kg)		•						
Lead	388	337	362.5	14.1	388	353	345	4.6
	BH18A	BHDUP2	Mean	RPD%	BH18A	BHTRIP2	Mean	RPD%
Metals/Metalloids (mg/kg)								
Arsenic	<5	<5	<5	-	<5	<5	<5	-
Chromium (total)	39	38	38.5	2.6	39	52	45.5	28.6
Copper	9	12	10.5	28.6	9	14	11.5	43.5
Nickel	9	9	9	-	9	18	13.5	66.7
Zinc	213	374	293.5	54.9	213	270	241.5	23.6
Cadmium	<1	<1	<1	-	<1	<1	<1	-
Lead	27	50	38.5	59.7	27	33	30	20
Mercury (inorganic)	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-
	BH39A	BHDUP3	Mean	RPD%	BH39A	BHTRIP3	Mean	RPD%
Metals/Metalloids (mg/kg)		•						
Arsenic	<5	<5	<5	-	<5	<5	<5	-
Chromium (total)	26	24	25	8	26	43	34.5	49.3
Copper	21	30	25.5	35.3	21	30	25.5	35.3
Nickel	18	23	20.5	24.9	18	24	21	28.6
Zinc	154	133	143.5	14.6	154	192	173	22
Cadmium	<1	<1	<1	-	<1	<1	<1	-
Lead	16	24	20	40	16	36	26	76.9
Mercury (inorganic)	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-

Appendix 15 Asbestos Investigation – Chain of Custody and Laboratory Certificates

SEE FOLLOWING PAGES

(ALS)	CHAIN OF CUSTOD	DADELAIDE 3/1 Burma Roa- Ph: 08 8162 5130 E: edelaide DBRISBANE 2 Byth Street St Ph: 07 3243 7222 E: samples, DGLADSTONE 48 Catlemond Ph: 07 4978 7944 E: ALSERVI	@alsglobal.com alford QLD 4053 brisbane@alsgloba lab Drive Gledston	Ph: 07 4952 5795 E: ALSE DMELBOURNE 2-4 Westa ALCOM Ph: 03 8549 9600 E: sampl a OLD 4660 DMUDGEE 1/29 Swifter 2-	wiro.Mackay@als Il Road Springvale es.melbourne@al	ylopai.com VIC 3171 gglobai.com 2850	INEWCASTLE 5/565 Mattland Road Mayfield West NSW 2024 IDSYDNEY 277-289 Woodpark Road Sminifald NSW 2154 Ph. 02 4074 2500 E, samples, newcastie@atgdobal.com Ph. 02 8784 8555 E, samples, sambles, sydney@atgdobal.com INOWRA 4/13 Geary Place North Nows NSW 2511 IDTCWNSVILLE 14-15 Desma Court Bothe QLD 4818 Ph. 02 4723 2036 E, nowc@atsiglobal.com Ph. 074709 0820 E; ALSEMAT Townsville@atsiglobal.com IDPERTH 10 Hod Way Mataga WA 8090 Ph. 02 4225 3125 E; wolongang@atsglobal.com IDWOLLONGONG 1/19-21 Raiph Black Drive, Nth Wallongong NSW 2520
LIENT: HMC Environn	nental Consulting Pty Ltd			OUND REQUIREMENTS : Stand	lard TAT (List	due date):	FOR LABORATORY USE ONLY (Circle)
FFICE: Tweed Heads				T name ha langes for some is de		gent TAT (List	st due date): Yes No
ROJECT: Bruxner Hig	Jhway GOONELLABAH PI	ROJECT NO.: 2022.11	06 ALS QUC				COC SEQUENCE NUMBER (Circle) Free ice / frozen ice bricks present upon Yes No receipt?
RDER NUMBER:	HMC2022.1106		COUNTRY	OF ORIGIN:			coc: b 2 3 4 5 6 7 Random Sample Temperature on Receipt: *C
ROJECT MANAGER:	MARK TUNKS	CONTACT	PH: 0755 36	3863			oF: 🗞 2 3 4 5 6 7 Other comment:
MPLER: Mark Tunk	S HMC	SAMPLER	MOBILE: 04	98 279212 RELINQU	ISHE BA		RECEIVED BY: RELINQUISHED BY: RECEIVED BY:
DC Emailed to ALS? (YES / NO)	EDD FOR	MAT (or defau	ilt):	112		Allon)
nail Reports to (will de	efault to PM if no other addresses are li	sted): admin@hmcenvironi	nent.com.au	DATE	1	$ \rightarrow $	DATE/TIME: DATE/TIME: DATE/TIME:
nail Invoice to (will de	ault to PM if no other addresses are lis	ted): admin@hmcenvironm	ent.com.au	9/	V/ Ze	27	11.08/2022 11:00
)MMENTS/SPECIAL I	ANDLING/STORAGE OR DISPOSAL	Poul	BLE	BARGED BO	Vac		BESTOS (FIBRO) SUSPECTED
ALS USE ONLY		DETAILS d(S) Water(W)		CONTAINER INFORMATION	4		SIS REQUIRED including SUITES (NB. Suite Codes must be listed to attract suite price) Additional Information Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EA200B - ASBESTOS	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
1	DWELLING 1 NE	5/08/2022 0:00	S	В	1	x	POTENTIAL ASBESTOS
2	DWELLING 1 NW	5/08/2022 0:00	s	В	1	x	POTENTIAL ASBESTOS
3	CHEM STORE	5/08/2022 0:00	S	В	1	x	POTENTIAL ASBESTOS
				······································			Environmental Division Brisbane Work Order Reference EB2223514
				A#	· ·		Telephone : + 61-7-3243 7222

ENFM (204/14)

CERTIFICATE OF ANALYSIS

Work Order	: EB2223514	Page	: 1 of 3
Client		Laboratory	Environmental Division Brisbane
Contact	: MARK TUNKS	Contact	: Customer Services EB
Address	: PO BOX 311	Address	: 2 Byth Street Stafford QLD Australia 4053
	TWEED HEADS NSW 2485		
Telephone	: 07 5536 8863	Telephone	: +61-7-3243 7222
Project	: 2022.1106 Bruxner Highway GOONELLABAH	Date Samples Received	: 11-Aug-2022 11:00
Order number	: HMC2022.1106	Date Analysis Commenced	: 16-Aug-2022
C-O-C number	:	Issue Date	: 18-Aug-2022 09:14
Sampler	: MARK TUNKS		INATA
Site	:		
Quote number	: EN/222		
No. of samples received	: 3		Accreditation No. 8 Accredited for compliance wi
No. of samples analysed	: 3		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Brendan Schrader	Laboratory Technician	Newcastle - Asbestos, Mayfield West, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Analysis of asbestos from swabs and tapes is not covered under the current scope of NATA accreditation.
- EA200: N/A Not Applicable

Sub-Matrix: SOLID (Matrix: SOLID)			Sample ID	DWELLING 1 NE	DWELLING 1 NW	CHEM STORE	
		Sampli	ng date / time	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2223514-001	EB2223514-002	EB2223514-003	
				Result	Result	Result	
EA200: AS 4964 - 2004 Identificatior	of Asbestos in bulk	samples					
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	Yes	Yes	
Asbestos Type	1332-21-4	-		Ch	Ch	Ch	
Asbestos (Trace)	1332-21-4	5	Fibres	N/A	N/A	N/A	
Sample weight (dry)		0.01	g	107	79.2	38.6	
Synthetic Mineral Fibre		0.1	g/kg	No	No	No	
Organic Fibre		0.1	g/kg	No	No	Yes	
APPROVED IDENTIFIER:		-		B.SCHRADER	B.SCHRADER	B.SCHRADER	

Descriptive Results

Sub-Matrix: SOLID

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in bulk samples	
EA200: Description	DWELLING 1 NE - 05-Aug-2022 00:00	One piece of asbestos cement sheeting approximately 135x105x5mm.
EA200: Description	DWELLING 1 NW - 05-Aug-2022 00:00	One piece of asbestos cement sheeting approximately 95x75x5mm.
EA200: Description	CHEM STORE - 05-Aug-2022 00:00	One piece of asbestos cement sheeting approximately 105x75x5mm.

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOLID) EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples

Appendix 16 Round 1 – Chain of Custody and Laboratory Certificates

SEE FOLLOWING PAGES

(AL'S)	ALS Laboratory: please tick →	DADELAIDE 3/1 Burme Road Ph: 08 9182 5130 E: adelaide DBRISBANE 2 Byin Street Stu Ph: 07 3243 7222 E: samples, DBLADSTONE 48 Callemond Ph: 07 4978 7944 E: ALSErvit	ide@alsglobal.com Stafford QLD 4053 es.brisbane@alsgloba ondah Drive Gladstone nviro.Gladstone@alsg	1 Ph: 07 4952. Dbal.com Ph: 03 8549 one QLD 4680 DMUDGEE isglobal.com Ph: 02 6372.	Y Unit 2/20 Caterpillar Drive F 52 5795 E: ALSEnviro.Macka; 9URNE 2-4 Westall Road Spri 149 9600 E: samples.melbourn E: 1/29 Sydney Road Mudgee 72 6735 E: mudgee.mai@als;	kay@alsglobal.c pringvale VIC 31 urne@alsglobal. iee NSW 2850	al.com 3171 pal.com 0	Ph: 02 40 DNOWR/ Ph: 02 44 DPERT	4014 2500 E: s /RA 4/13 Geary 4423 2063 E: n RTH 10 Hod Wa	: samples,newca: iry Place North No : nowra@alsgloba Nay Malaga, WA (.com Ph: 02 8784 1 D™OWNSVII Ph: 07 4796 I □VVQI LONG	Ph: 02 8764 8555 E: samples.sydney@alsglobal.com DTOWNSVLLE 14-15 Desma Court Bohle QLD 4818 Ph: 07 4796 0800 E: AlSEnviro.Townsville@alsglobal.com DVIOLLONGONG 1/19-21 Raiph Black Drive. Nth Wollongong NSW 2500 Ph: 02 4225 3125 E: wollongong@alsglobal.com			
	mental Consulting Pty Ltd				Standard TAT	•	•	· ·				FOR LABORATO				
DFFICE: Tweed Heads			e.g., Ultra Tr	TAT may be longer for some tests Trace Organics)	Non Standard	or urgent	TAT (List d	ue date):				Custodiy Seal Intact?			No N/	
		PROJECT NO.: 2022.11	1106 ALS QUO							JENCE NUMF	BER (Circle)			nt upon	No N/	
PROJECT MANAGER: N	HMC2022.1106	CONTAC						coc:	12	34	56		emperature on			
AMPLER: Mark Tunks		·······	CT PH: 0755 368					OF:	1 2	314	5 6	7 Other comment;		· · · · · · · · · · · · · · · · · · ·		
COC Emailed to ALS? (ER MOBILE: 040		RELINQUISHED B	.Y:		RECEN	IVED BY:	DUN	M	RELINQUIS HED BY:		RECEIVED BY:		
	efault to PM if no other addresses are lis		•	·····	-					0/	daz	1				
	fault to PM if no other addresses are list							DATE/T	IME:	710	5/0.07	DATE/TIME:		DATE/TIME:		
	HANDLING/STORAGE OR DISPOSAL		<u>/en.co</u>		<u> </u>					4:5	_5	<u> </u>		·		
ALS USE ONLY		E DETAILS olid(S) Water(W)		CONTAINER INFO	ORMATION							odes must be listed to attract so r Dissolved (field fillered bottle rec		Additional Inform	mation	
.]	1		\top					ins are required	, spoony		<u> </u>	Assolved (field finiteriad politie rec		Comments on likely contaminan		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATI (refer to codes below)		L LES	EG020F (LEAD)	EA200G (ASBESTOS)	S-12 (0C/0P)	S-2 (METALS)	S-7 - TRH/BTEXN/PAH			dilutions, or samples requiring s analysis etc.	it leveis, specific QC	
1	BH1A	5/08/2022 0:00	s	ŜT	1			x		<u></u>	ן 		┌── ┤			
2	BH2A	5/08/2022 0:00	s	ST	1		x	x			 +		Enviro	nmental Division	•	
3	ВНЗА	5/08/2022 0:00	S	ST	1	, <u> </u>	x	x			[Brisban Work (ne Order Reference	·	
4	BH4A	5/08/2022 0:00	S	ST	1	,	x	x			† †		EP	32223282	·	
5	BH5A	5/08/2022 0:00	S	ST	1	,	x	x				1				
6	BH6A	5/08/2022 0:00	s	ST	1	\top ,	x	x				1		約5550000000000000000000000000000000000	, <u> </u> .	
7	BH7A	5/08/2022 0:00	S	ST	1	,	x	x								
8	BH8A	5/08/2022 0:00	s	ST	1	y	x	x				1		- 61-7-3243 7222	I	
9	BH9A	5/08/2022 0:00	S	ST	1	у	x	x		ıı			l c	·01-1-0240 1 621	 	
10	BH10A	5/08/2022 0:00	S	ST	1	у	X :	x						· · · · · · · · · · · · · · · · · · ·	-	
	BH11A	5/08/2022 0:00	S	ST	1				x	x	x		1			
12	BH12A	5/08/2022 0:00	s	ST	1				x	x	x		1			
13	BH13A	5/08/2022 0:00	s	ST	1				x	x	x	1	1			
14	BH14A	5/08/2022 0:00	S	ST	1				x	x	x					
					TOTAL 14		10 1	10		, 	4	·	·			

Z = Zinc Acetate Preserved Bottles; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottles; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottles; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottles; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottles; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; Li = Lugols Iodine Preserved Bottles; STT = Sterile Bottles; ST = Sterile Bottles; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bottles; ST = Sterile Bottles;

ALS	CHAIN OF CUSTOD ALS Laboratory: please tlok →	OADELAIDE 3/1 Burma Road Ph: 08 8162 5130 E: adelaide DBRISBANE 2 Byth Street Sta Ph: 07 3243 7222 E: samples. CIGLADSTONE 48 Callemond Ph: 07 4978 7944 E: ALSEnvir	Balsglobal.com Ph: 07 4952 6795 E: ALSEnvil ford QLD 4053 DMELBOURNE 2-4 Westall F risbane@alsglobal.com Ph: 03 8549 9600 E: samples h Drive Gladstone QLD 4650 DMUDGEE 1/29 Sydney Road			Road Springvale s.melbourne@als ad Mudgee NSW 3	ackay@alsgfobal.com Pr i Springvale VIC 3171 IN Ibourne@alsgfobal.com Ph: udgee NSW 2850 III			UNEWCASTLE 5/685 Maitland Road Mayfield West NSW 230. Ph: 02 4014 2500 E: samples newcastle@alsglobal.com UNOWRA 4/13 Gaary Flace North Nowra NSW 2541 Ph: 02 4423 2063 E: nowra@alsglobal.com 5 DPERTH 10 Hod Way Malaga WA 6050 Ph: 08 9209 7655 E: samples.perth@alsglobal.com			Ph: 02 8784 DTOWNSVI Ph: 07 4796 QWOLLON	8555 E: sample ILLE 14-15 Desn 0600 E: ALSEnv GONG 1/19-21 F	ark Road Smithfield NSW 2164 s.sydnerg@alsgliobal.com na Court Bohle QLD 4818 tio:Townsvill@agsliobal.com Raph Black Drive, Nth Watlangong NSW 2500 ong@alsglebal.com	0
LIENT: HMC Environ	nental Consulting Pty Ltd		(Stondord TAT movies longer for some tests				due date):						FOR LABORATORY USE ONLY (Circle)			
FFICE: Tweed Heads			(Standard TAT e.g., Ultra Trace		Non S	tandard or urg	ent TAT (Li	st due date):				tody Seal Intact		Yes No	N/
ROJECT: Bruxner Hi	ghway GOONELLABAH	PROJECT NO.: 2022.11	6 ALS QUOTE	E NO.:					COC SEQU	ENCE NUMBI	ER (Circle)	Free recei	: ice / frozen ice ipt?	bricks presen	tupon Yes No	N/.
RDER NUMBER:	HMC2022.1106	· · · · · · · · · · · · · · · · · · ·	COUNTRY O	F ORIGIN:				coc	: 12	34	56	7 Rand	dom Sample Te	mperature on	Receipt C	
OJECT MANAGER:			PH: 0755 36886		·			OF:		3 4	15 6		er comment:			
MPLER: Mark Tunk			MOBILE: 0408		RELINQUI	SHED BY:		RÉC	EIVED BY:		1119	RELINQU	IISHED BY:		RECEIVED BY:	
OC Emailed to ALS?			IAT (or default)	:		_				alal	- 0					
	efault to PM if no other addresses are					=:		DAT	E/TIME:	4181	r 2-	DATE/TIM	1E:		DATE/TIME:	
	fault to PM if no other addresses are I		ent.com.au	. <u></u>	<u> </u>				<u>ll · S</u>	5 1						<u> </u>
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSA	AL:														
ALS USE ONLY		E DETAILS blid(S) Water(W)			ORMATION					•			listed to attract : ald filtered bottle n	. ,	Additional Information	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVAT (refer to codes below		TOTAL BOTTLES	EG020F (LEAD)	EA200G (ASBESTOS)	s-12 (OC/OP)	S-2 (METALS)	S-7 - TRH/BTEXN/PAH	N-2T (METALS)	W-12 (OC/OP)	W7- ТКН/ВТЕХN/РАН	Comments on likely contaminant levels dilutions, or samples requiring specific analysis etc.	
15	BH15A	5/08/2022 0:00	S	ST		1	ш	<u> </u>	x	x	X		5	5 F	· · · · · · · · · · · · · · · · · · ·	
16	BH16A	5/08/2022 0:00	s	ST		1 .			x	x	x		1			
17 .	BH17A	5/08/2022 0:00	S	ST		1			x	x	x					
18	BH18A	5/08/2022 0:00	S	ST		1			x	x	х				1.	
19	BH19A	508/2022 0:00	s	ST		1			x	x	x					
20	BH20A	5/08/2022 0:00	s	ST		1			x	x	x					
21	BH21A	5/08/2022 0:00	s	ST		1		x	x	x	x					
22	BH22A	5/08/2022 0:00	s	ST		1		x	x	x	x					
23	BHDUP1	5/08/2022 0:00	s	ST		1	x	×								
24	BHDUP2	5/08/2022 0:00	s	ST		1			x	x	x					
معتر	BHTRIP1	5/08/2022 0:00	s	ST		1	x	x							INTERLAB	
<u>_</u>	BHTRIP2	5/08/2022 0:00	S	ST		1	, ,		x	x	x				INTERLAB	
35	BHRS1	5/08/2022 0:00	w	N,VOA,AG		3				ļ		x	x	x		
					TOTAL	. 15	2	4	10	10	10	1	1	. 1	1	

Water Container Codes: P = Unpreserved Flastic, N = Nitric Preserved Plastic, ORC = Nitric Preserved Distric, ORC = Nitric Preserved Distric, ORC = Nitric Preserved Distric, N = Nitric, N = Nitric Preserved Distric, N = Nitric Preserved Distric,

÷

CERTIFICATE OF ANALYSIS

Work Order	EB2223282	Page	: 1 of 21
Client		Laboratory	: Environmental Division Brisbane
Contact	: MARK TUNKS	Contact	: Customer Services EB
Address	SUITE 29, LEVEL 2 75-77 WHARF STREET TWEED HEADS 2485	Address	: 2 Byth Street Stafford QLD Australia 4053
Telephone	: 07 5536 8863	Telephone	: +61-7-3243 7222
Project	: 2022.1106 Bruxner Highway GOONELLABAH	Date Samples Received	: 09-Aug-2022 11:55
Order number	: HMC2022.1106	Date Analysis Commenced	: 11-Aug-2022
C-O-C number	:	Issue Date	: 23-Aug-2022 09:11
Sampler	: MARK TUNKS		
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 25		Accredited for compliance with
No. of samples analysed	: 25		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Timothy Creagh	2IC Organic Chemist	Brisbane Inorganics, Stafford, QLD
Timothy Creagh	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020-S (Soluble Metals by ICP-MS): Some samples show poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG005T-Total Metals by ICP-AES: Sample 'BH12A' (EB2223282-012) shows poor matrix spike recovery due to sample heterogeneity. Confirmed by visual inspection.
- EP071 Semivolatile TPH: Sample "EB2223297_052" showed poor matrix spike recovery. Insufficient volume for confirmation and re-extraction.
- EG005T (Total Metals by ICP-AES): BH2A (EB2223282-002) shows poor matrix spike recovery due to sample heterogeneity. This has been confirmed by visual inspection.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH1A	BH2A	BH3A	BH4A	BH5A
		Sampli	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-001	EB2223282-002	EB2223282-003	EB2223282-004	EB2223282-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		0.1	%	22.0	32.1	29.5	26.7	33.3
EG005(ED093)T: Total Metals by	ICP-AES							
Lead	7439-92-1	5	mg/kg	124	219	388	145	88

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH6A	BH7A	BH8A	BH9A	BH10A
		Sampli	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-006	EB2223282-007	EB2223282-008	EB2223282-009	EB2223282-010
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		0.1	%	30.7	32.1	36.7	34.6	24.5
EG005(ED093)T: Total Metals by	ICP-AES							
Lead	7439-92-1	5	mg/kg	222	626	1640	320	2160

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH11A	BH12A	BH13A	BH14A	BH15A
		Samplii	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-011	EB2223282-012	EB2223282-013	EB2223282-014	EB2223282-015
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	32.0	33.6	23.1	37.4	36.1
EG005(ED093)T: Total Metals by IC	P-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	15
Chromium	7440-47-3	2	mg/kg	38	40	37	47	34
Copper	7440-50-8	5	mg/kg	52	19	24	17	24
Lead	7439-92-1	5	mg/kg	733	62	45	82	131
Nickel	7440-02-0	2	mg/kg	13	13	10	13	15
Zinc	7440-66-6	5	mg/kg	1380	1200	394	2620	4880
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg	0.3	<0.1	<0.1	0.2	<0.1
EP068A: Organochlorine Pesticide			00					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.17	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	< 0.05

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH11A	BH12A	BH13A	BH14A	BH15A
		Samplii	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-011	EB2223282-012	EB2223282-013	EB2223282-014	EB2223282-015
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	0.17	<0.05	<0.05
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aroma	atic Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	0.6	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	1.3	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	1.4	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	0.9	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH11A	BH12A	BH13A	BH14A	BH15A
		Samplii	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-011	EB2223282-012	EB2223282-013	EB2223282-014	EB2223282-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	0.8	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons	s	0.5	mg/kg	7.2	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	1.3	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.6	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	180	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	180	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fraction	າຣ					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	200	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	120	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	320	<50	<50	<50	<50
 >C10 - C16 Fraction minus Naphthalene (F2) 		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH11A	BH12A	BH13A	BH14A	BH15A
		Sampli	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-011	EB2223282-012	EB2223282-013	EB2223282-014	EB2223282-015
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	131	133	126	137	128
EP068T: Organophosphorus Pesti	cide Surrogate							
DEF	78-48-8	0.05	%	104	107	103	109	104
EP075(SIM)S: Phenolic Compound	l Surrogates							
Phenol-d6	13127-88-3	0.5	%	110	110	104	112	106
2-Chlorophenol-D4	93951-73-6	0.5	%	108	109	101	110	102
2.4.6-Tribromophenol	118-79-6	0.5	%	116	118	112	118	113
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	114	113	105	114	106
Anthracene-d10	1719-06-8	0.5	%	108	104	101	108	104
4-Terphenyl-d14	1718-51-0	0.5	%	105	102	98.2	106	101
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	81.4	78.0	87.1	81.8	85.9
Toluene-D8	2037-26-5	0.2	%	73.3	70.4	77.3	68.7	74.6
4-Bromofluorobenzene	460-00-4	0.2	%	80.6	78.8	84.1	77.6	81.3

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH16A	BH17A	BH18A	BH19A	BH20A
		Samplii	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-016	EB2223282-017	EB2223282-018	EB2223282-019	EB2223282-020
			-	Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	30.0	29.8	29.9	39.5	14.2
EG005(ED093)T: Total Metals by IC	P-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	5
Chromium	7440-47-3	2	mg/kg	40	34	39	43	20
Copper	7440-50-8	5	mg/kg	17	11	9	20	49
Lead	7439-92-1	5	mg/kg	74	85	27	46	143
Nickel	7440-02-0	2	mg/kg	10	8	9	12	12
Zinc	7440-66-6	5	mg/kg	171	562	213	493	2750
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticide			00					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	< 0.05	<0.05	<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH16A	BH17A	BH18A	BH19A	BH20A
		Samplii	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-016	EB2223282-017	EB2223282-018	EB2223282-019	EB2223282-020
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
	0-2							
EP068B: Organophosphorus Pes	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
EP075(SIM)B: Polynuclear Aroma	atic Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	0.7	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	8.9	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	1.7	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	10.0	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	9.8	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	4.6	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	3.7	<0.5	<0.5	<0.5	<0.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH16A	BH17A	BH18A	BH19A	BH20A
		Sampli	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-016	EB2223282-017	EB2223282-018	EB2223282-019	EB2223282-020
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
	205-99-2 205-82-3	0.5	mg/kg	3.6	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	3.0	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	1.3	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.6	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons	;	0.5	mg/kg	49.9	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	4.1	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	4.4	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	4.6	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	170	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	120	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	290	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	າຣ					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	250	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	250	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH16A	BH17A	BH18A	BH19A	BH20A
		Sampli	ng date / time	05-Aug-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2223282-016	EB2223282-017	EB2223282-018	EB2223282-019	EB2223282-020
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	132	129	135	128	133
EP068T: Organophosphorus Pesti	cide Surrogate							
DEF	78-48-8	0.05	%	98.4	104	108	104	104
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	114	108	113	105	112
2-Chlorophenol-D4	93951-73-6	0.5	%	109	105	109	100	107
2.4.6-Tribromophenol	118-79-6	0.5	%	122	112	116	111	114
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	118	110	114	108	115
Anthracene-d10	1719-06-8	0.5	%	113	102	106	103	106
4-Terphenyl-d14	1718-51-0	0.5	%	113	101	105	103	107
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	83.2	84.2	72.5	84.9	88.9
Toluene-D8	2037-26-5	0.2	%	71.4	72.7	72.5	71.8	76.5
4-Bromofluorobenzene	460-00-4	0.2	%	75.2	77.1	93.4	76.7	82.8

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH21A	BH22A	BHDUP1	BHDUP2	
		Samplii	ng date / time	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2223282-021	EB2223282-022	EB2223282-023	EB2223282-024	
				Result	Result	Result	Result	
EA055: Moisture Content (Dried @) 105-110°C)							
Moisture Content		0.1	%			27.8		
Moisture Content		1.0	%	35.3	19.4		28.8	
EG005(ED093)T: Total Metals by IC	CP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	6		<5	
Cadmium	7440-43-9	1	mg/kg	4	5		<1	
Chromium	7440-47-3	2	mg/kg	43	131		38	
Copper	7440-50-8	5	mg/kg	18	104		12	
Lead	7439-92-1	5	mg/kg	127	203	337	50	
Nickel	7440-02-0	2	mg/kg	13	55		9	
Zinc	7440-66-6	5	mg/kg	2130	4970		374	
EG035T: Total Recoverable Mercu	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.9		<0.1	
EP068A: Organochlorine Pesticide								
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05		<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05		<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05		<0.05	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05		<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05		<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05		<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.06		<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05		<0.05	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2		<0.2	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH21A	BH22A	BHDUP1	BHDUP2	
		Samplin	ng date / time	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2223282-021	EB2223282-022	EB2223282-023	EB2223282-024	
				Result	Result	Result	Result	
EP068A: Organochlorine Pestici	des (OC) - Continued							
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2		<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	0.06		<0.05	
	0-2							
P068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05		<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2		<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2		<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2		<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05		<0.05	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5		<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5		<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	1.2		<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	1.2		<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	0.8		<0.5	

		Sample ID	BH21A	BH22A	BHDUP1	BHDUP2	
	Samplir	ng date / time	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	
CAS Number	LOR	Unit	EB2223282-021	EB2223282-022	EB2223282-023	EB2223282-024	
		-	Result	Result	Result	Result	
lydrocarbons - Cont	inued						
218-01-9	0.5	mg/kg	<0.5	0.7		<0.5	
205-99-2 205-82-3	0.5	mg/kg	<0.5	0.8		<0.5	
207-08-9	0.5	mg/kg	<0.5	<0.5		<0.5	
50-32-8	0.5	mg/kg	<0.5	0.6		<0.5	
193-39-5	0.5	mg/kg	<0.5	<0.5		<0.5	
53-70-3	0.5	mg/kg	<0.5	<0.5		<0.5	
191-24-2	0.5	mg/kg	<0.5	<0.5		<0.5	
ıs	0.5	mg/kg	<0.5	5.3		<0.5	
	0.5	mg/kg	<0.5	0.8		<0.5	
	0.5	mg/kg	0.6	1.1		0.6	
	0.5	mg/kg	1.2	1.4		1.2	
bons							
	10	mg/kg	<10	<10		<10	
	50	mg/kg	<50	<50		<50	
	100	mg/kg	<100	110		<100	
	100	mg/kg	<100	170		<100	
	50	mg/kg	<50	280		<50	
arbons - NEPM 201	3 Fractior	ıs					
C6_C10	10	mg/kg	<10	<10		<10	
C6_C10-BTEX	10	mg/kg	<10	<10		<10	
	50	mg/kg	<50	<50		<50	
	100	mg/kg	<100	240		<100	
	100	mg/kg	<100	110		<100	
	50	mg/kg	<50	350		<50	
	50	mg/kg	<50	<50		<50	
71 42 2	0.2	ma/ka	<0.2	<0.2		<0.2	
90-47-0							
	lydrocarbons - Cont 218-01-9 205-99-2 205-82-3 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2 ns bons carbons - NEPM 201 C6_C10 C6_C10-BTEX 	CAS Number LOR 4ydrocarbons - Continued 218-01-9 0.5 205-99-2 205-82-3 0.5 207-08-9 0.5 50-32-8 0.5 193-39-5 0.5 193-39-5 0.5 193-39-5 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 191-24-2 0.5 100 100 50 50 50 50 50 50 50 50	Sampling date / time CAS Number LOR Unit 4ydrocarbons - Continued 218-01-9 0.5 mg/kg 205-99-2 205-82-3 0.5 mg/kg 207-08-9 0.5 mg/kg 50-32-8 0.5 mg/kg 193-39-5 0.5 mg/kg 53-70-3 0.5 mg/kg 191-24-2 0.5 mg/kg 10.5 mg/kg mg/kg 0.5 mg/kg 0.5 mg/kg 10 mg/kg 100 mg/kg 50 mg/kg 50 mg/kg 50 mg/kg 50 mg/kg <	Sampling date / time 05-Aug-2022 00:00 CAS Number LOR Unit EB2223282-021 Hydrocarbons - Continued EB2223282-021 Result 218-01-9 0.5 mg/kg <0.5	Sampling date / time 05-Aug-2022 00:00 05-Aug-2022 00:00 CAS Number LOR Unit EB223282-021 EB223282-022 Result Result Result Result 4ydrocarbons - Continued 0.5 mg/kg <0.5 0.7 205-99-2 205-82.3 0.5 mg/kg <0.5	Sampling date / time 0.5.4M Default Default <thdefault< th=""> <thdefault< td="" thd<=""><td>Sampling date / time Observe Observe<!--</td--></td></thdefault<></thdefault<>	Sampling date / time Observe Observe </td

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH21A	BH22A	BHDUP1	BHDUP2	
		Sampli	ng date / time	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	05-Aug-2022 00:00	
Compound	CAS Number	LOR	Unit	EB2223282-021	EB2223282-022	EB2223282-023	EB2223282-024	
				Result	Result	Result	Result	
EP080: BTEXN - Continued								
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5		<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1		<1	
EP068S: Organochlorine Pestici	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	133	138		128	
EP068T: Organophosphorus Pes	sticide Surrogate							
DEF	78-48-8	0.05	%	107	104		91.2	
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	112	115		109	
2-Chlorophenol-D4	93951-73-6	0.5	%	105	108		101	
2.4.6-Tribromophenol	118-79-6	0.5	%	110	113		107	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	117	120		108	
Anthracene-d10	1719-06-8	0.5	%	104	108		102	
4-Terphenyl-d14	1718-51-0	0.5	%	108	114		103	
EP080S: TPH(V)/BTEX Surrogate	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	78.3	92.5		94.8	
Toluene-D8	2037-26-5	0.2	%	66.3	76.0		81.7	
4-Bromofluorobenzene	460-00-4	0.2	%	72.3	83.8		85.6	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS1	 	
		Samplii	ng date / time	05-Aug-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2223282-025	 	
Compound				Result	 	
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035T: Total Recoverable Mercur	ry by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP068A: Organochlorine Pesticides	s (OC)					
alpha-BHC	319-84-6	0.5	µg/L	<0.5	 	
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	 	
beta-BHC	319-85-7	0.5	µg/L	<0.5	 	
gamma-BHC	58-89-9	0.5	µg/L	<0.5	 	
delta-BHC	319-86-8	0.5	µg/L	<0.5	 	
Heptachlor	76-44-8	0.5	µg/L	<0.5	 	
Aldrin	309-00-2	0.5	µg/L	<0.5	 	
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	 	
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	 	
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	 	
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	 	
Dieldrin	60-57-1	0.5	µg/L	<0.5	 	
4.4`-DDE	72-55-9	0.5	μg/L	<0.5	 	
Endrin	72-20-8	0.5	µg/L	<0.5	 	
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	 	
4.4`-DDD	72-54-8	0.5	µg/L	<0.5	 	
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	 	
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	 	
4.4`-DDT	50-29-3	2.0	µg/L	<2.0	 	
Endrin ketone	53494-70-5	0.5	µg/L	<0.5	 	
Methoxychlor	72-43-5	2.0	µg/L	<2.0	 	
^ Total Chlordane (sum)		0.5	µg/L	<0.5	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.5	µg/L	<0.5	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	μg/L	<0.5	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS1	 	
		Sampli	ng date / time	05-Aug-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2223282-025	 	
				Result	 	
EP068A: Organochlorine Pesticid	es (OC) - Continued					
EP068B: Organophosphorus Pest	ticides (OP)					
Dichlorvos	62-73-7	0.5	µg/L	<0.5	 	
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	 	
Monocrotophos	6923-22-4	2.0	µg/L	<2.0	 	
Dimethoate	60-51-5	0.5	µg/L	<0.5	 	
Diazinon	333-41-5	0.5	µg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	 	
Parathion-methyl	298-00-0	2.0	µg/L	<2.0	 	
Malathion	121-75-5	0.5	µg/L	<0.5	 	
Fenthion	55-38-9	0.5	µg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	 	
Parathion	56-38-2	2.0	µg/L	<2.0	 	
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	µg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	µg/L	<0.5	 	
Ethion	563-12-2	0.5	µg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	µg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	 	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS1	 	
		Sampli	ng date / time	05-Aug-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2223282-025	 	
			-	Result	 	
EP075(SIM)B: Polynuclear Aromatic Hy	vdrocarbons - Cont	inued				
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbons	s	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hydrocarb	oons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	μg/L	<50	 	
C15 - C28 Fraction		100	μg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
[^] C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	
[^] >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	 	
(F2)						
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP068S: Organochlorine Pesticide Sur						
Dibromo-DDE	21655-73-2	0.5	%	102	 	
EP068T: Organophosphorus Pesticide	Surrogate					
DEF	78-48-8	0.5	%	82.8	 	

					i		i
Sub-Matrix: WATER			Sample ID	BHRS1		 	
(Matrix: WATER)							
		Sampli	ng date / time	05-Aug-2022 00:00		 	
Compound	CAS Number	LOR	Unit	EB2223282-025		 	
				Result		 	
EP075(SIM)S: Phenolic Compound S	urrogates						
Phenol-d6	13127-88-3	1.0	%	34.3		 	
2-Chlorophenol-D4	93951-73-6	1.0	%	90.9		 	
2.4.6-Tribromophenol	118-79-6	1.0	%	97.1		 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	94.6		 	
Anthracene-d10	1719-06-8	1.0	%	96.8		 	
4-Terphenyl-d14	1718-51-0	1.0	%	83.1		 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	104		 	
Toluene-D8	2037-26-5	2	%	97.1		 	
4-Bromofluorobenzene	460-00-4	2	%	103		 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	138
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	23	134
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	35	154
2-Chlorophenol-D4	93951-73-6	42	153
2.4.6-Tribromophenol	118-79-6	26	157
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	34	156
Anthracene-d10	1719-06-8	37	153
4-Terphenyl-d14	1718-51-0	42	172
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	53	134
Toluene-D8	2037-26-5	60	131
4-Bromofluorobenzene	460-00-4	59	127
Sub-Matrix: WATER		Recovery	Limits (%)
Sub-Matrix: WATER Compound	CAS Number	Recovery Low	Limits (%) High
	CAS Number		
Compound	CAS Number 21655-73-2		
Compound EP068S: Organochlorine Pesticide Surrogate	21655-73-2	Low	High
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE	21655-73-2	Low	High
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate	21655-73-2	Low 45	High 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF	21655-73-2	Low 45	High 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates	21655-73-2 78-48-8	Low 45 45	High 139 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6	21655-73-2 78-48-8 13127-88-3	Low 45 45 10	High 139 139 72
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4	21655-73-2 78-48-8 13127-88-3 93951-73-6	Low 45 45 10 27	High 139 139 72 130
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol	21655-73-2 78-48-8 13127-88-3 93951-73-6	Low 45 45 10 27	High 139 139 72 130
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6	Low 45 45 10 27 19	High 139 139 72 130 181
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8	Low 45 45 10 27 19 14	High 139 139 72 130 181 146
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8	Low 45 45 10 27 19 14 35	High 139 139 72 130 181 146 137
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8	Low 45 45 10 27 19 14 35	High 139 139 72 130 181 146 137
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14 EP080S: TPH(V)/BTEX Surrogates	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8 1719-06-8 1718-51-0	Low 45 45 10 27 19 14 35 36	High 139 139 72 130 181 146 137 154

Appendix 17 Round 2 – Chain of Custody and Laboratory Certificates

SEE FOLLOWING PAGES

(ALS)*	CHAIN OF CUSTOD ALS Laboratory: please tick →	□ADELAIDE 3/1 Burne Road Ph: 08 8162 5130 E: adelaice □BRISBANE 2 Byth Street Sta Ph: 07 3243 7222 E: samples.1 □GLADSTONE 48 Callemond Ph: 07 4978 7944 E: AL\$Ervin	®alsglobal.com ifford QLD 4053 onsbane@alsglobal. ah Drive Gladstone i	QLD 4680 GMUDGEE 1/29 Sydney R	nviro Mackay@alsg all Road Springvale iles.melboorne@als Road Mudgae NSW	tobai com ViC 3171 global.com 2850	Ph: 02 4014 29 DNOWRA 4/13 Ph: 02 4423 20 DPERTH 10 1	E 5/565 Maitland Roa 500 E. samples.newca 3 Geary Place North N 163 E: nowra@alsglob Hod Way Malaga WA 1655 E: samples perth	stle@atsglobal.co. owra NSW 2541 al.com 6090		Ph: 02 8784 855 TOWNSVILLE Ph: QV Ph.	i5 E: samples 14-15 Deem NVIFOF	rk Road Smithfield NSW 2164 sydney@elegobal.com e Pout Polity OF 2440 Immental Division
	nmental Consulting Pty Ltd	· · · · · · · · · · · · · · · · · · ·		may be leaser for some tests	dard TAT (List				<u>.</u>	FOR	.AB		Order Reference
FFICE: Tweed Head			e.g., Ultra Tra	ce Organics) LI Non	Standard or urg	jent TAT (List				Custod Free ic	-	EE	32226459
ROJECT: Bruxner	Highway GOONELLABAH F	PROJECT NO.: 2022.11	06 ALS QUOT		····		COC	SEQUENCE NUM	BER (Circle)	receipt			
DER NUMBER:	HMC2022.1106	····		OF ORIGIN:			coc: (A)	2 3 4	56	7 Rando	m Sa		
OJECT MANAGER			PH: 0755 368				OF: 1	Q) 3 4	5 6	7 Other of			
MPLER: Matthew		SAMPLER	MOBILE: 040	3 279212 RELINOL	HEHED BY:		RECEIVED	BY:		RELINQUIS	HEC		NYE RYSINSY. HIII
C Emailed to ALS	? (YES / NO)	EDD FOR	WAT (or defaul	t):	$\not =$	>		<u>ک</u> ر	(2:32)				
	default to PM if no other addresses are				\mathcal{N}	~	DATE/TIME	1.1		DATE/TIME		alenhone	- 61-7-3243 7222
	default to PM if no other addresses are li					522	1	19/22	,			SIGPTUNE	
MMENTS/SPECIA	L HANDLING/STORAGE OR DISPOSA	L: PLEASE	HOLE	ONTIC CLIE	NT .	APPRO	NAL	CONFIR	emes				
ALS USE ONLY	SAMPL	E DETAILS blid(S) Water(W)		CONTAINER INFORMATIO			S REQUIRED in etals are required, spe	-					Additional Information
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	EG020F (LEAD)							Comments on likely contaminant levels dilutions, or samples requiring specific analysis etc.
1	BH23A	5/09/2022 0:00	S	ST	1	x							
2	BH24A	5/09/2022 0:00	S	ST	1	x							
3	BH25A	5/09/2022 0:00	s	ST	1	x							
4	BH26A	5/09/2022 0:00	s	ST	1	x							
5	BH27A	5/09/2022 0:00	S	ST	1	x							
6	BH28A	5/09/2022 0:00	s	ST	1	x							
7	BH29A	5/09/2022 0:00	s	ST	1	x							
8	BH30A	5/09/2022 0:00	S	ST	1	x							
9	BH31A	5/09/2022 0:00	S	ST	1	x							
10	BH32A	5/09/2022 0:00	S	ST	1	x							
11	BH33A	5/09/2022 0:00	S	ST	1	x							
12	BH34A	5/09/2022 0:00	S	ST	1	x							
13	BH35A	5/09/2022 0:00	S	ST	1	x							
	BH36A	5/09/2022 0:00	s	ST	1	x							
14			بالعبر الم						1				1

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; N = Nitric Preserved Plastic; A = A mber Glass Unpreserved; A - Arifreight Unpreserved Plastic; A = Nitric Preserved Plastic; A = Nitric Plastic; A = Nitric Preserved Plastic; A = Nitric Plastic; A

A /	CHAIN OF CUSTOD	UADELAIDE 3/1 Burma Road Ph: 08 8162 5130 E; adelaide(@alsglobal.com	3MACKAY Unit 2/20 Cet Ph: 07 4952 5795 E: ALS	SEnviro.Mackay@alsgl	obal.com	Ph. 02	VCASTLE 5/585 4014 2500 E. s	amples.newcas	tie@alsglobal.c	VSW 2364 pm	Ph: 02 8784 8655 E: 9	sampies	x Road Smithfield NSW 2164 sydney@alsglobal.com	
	ALS Laboratory: please tick →	UBRISBANE 2 Byth Street Sta Ph: 07 3243 7222 E: samples.b		OMEL8OURNE 2-4 We om Ph: 03 6549 9600 E: sar				VRA 4/13 Geary 4423 2053 E. n						a Court Bohle QLD 4816 5.Townsville@alsglobal.com	
(ALS)		GLADSTONE 48 Callemonda Ph: 07 4978 7944 E: ALSEnvin	sh Drive Gladstone C 5.Gladstone@alsglot	0LD 4690 QMUDGEE 1/29 Sydney pal.com Ph: 02 6372 6735 E: mud	/ Road Mudgee NSW 2 dgee mail@alsglobal.c	850 om	OPEI Ph: 0	RTH 10 Hod Wa 6 9209 7655 E	iy Malaga IVA 8 samples.perth@	1090 Şatşginbal com		DWOLLONGONG 1/ Ph: 02 4225 3125 E: \	19-21 Ra voliongo	iph Black Drive, Nth Wollongong NSW 2500 ng@alsglobal.com	
LIENT: HMC Environr	nental Consulting Pty Ltd	· · · · · · ·	TURNARO	UND REQUIREMENTS : Sta	andard TAT (List (lue date):					FOR	LABORATORY U	SE ON	ILY (Circle)	
FFICE: Tweed Heads		· · ·	(Standard TAT e.g., Uitra Trac	may be longer for some tests	n Standard or urg	ent TAT (Lis	t due date):	:			Custo	ody Seal Intact?		Yes No	N
ROJECT: Bruxner Hi	ghway GOONELLABAH P	ROJECT NO.: 2022.110	06 ALS QUOT				1	COC SEQU		ER (Circle)	Free recei	ice / frozen ice bricks ; ot?	present	upon Yes No	N
RDER NUMBER:	HMC2022.1106		COUNTRY	OF ORIGIN:			coc:	7_	34	.56	7 Rand	om Sample Temperati	ure on F	Receipt: "C	
ROJECT MANAGER:	MARK TUNKS	CONTACT	PH: 0755 3688	63	_		OF:	1 🚳	34	56	7 Other	comment:			
AMPLER: Matthew F	anagan HMC	SAMPLER	MOBILE: 0408	279212 RELING	UISHED BY:		RECI	EIVED BY:			RELINQU	SHED BY:		RECEIVED BY:	
OC Emailed to ALS?	YES / NO)	EDD FORM	AAT (or default	<u>*</u>				ン	12	30					
	efault to PM if no other addresses are li	· •		DATEN	ME	2	DATE		~		DATE/TIM	E:		DATE/TIME:	
mail Invoice to (will de	fault to PM if no other addresses are lis		· · ·	۵۵	79/20			1972	ン						
OMMENTS/SPECIAL	HANDLING/STORAGE OR DISPOSAL	L: PLBASE	HOLD	UNTIC CLIC	5./7 A	PROV	AC	CON	FIRm	NGS.					
ALS USE ONLY		DETAILS id(S) Water(W)		CONTAINER INFORMATI	ON				-			sted to attract suite prive difference of the state of the suite of the second state o	ce)	Additional Information	
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (refer to codes below)	TOTAL BOTTLES	G020F (LEAD)	S-12 (OC/OP)	S-2 (METALS)	S-7 - TRH/BTEXN/PAH	W7- TRH/BTEXN/PAH	V-2T (METALS)	4-12 (OC/OP)		Comments on likely contaminant levels dilutions, or samples requiring specific analysis etc.	
15	ВН37А	5/09/2022 0:00	s	ST	1		x	X	x	· ·	>	>			
16	BH38A	5/09/2022 0:00	S	ST	1		x	x	x						
17	BH39A	5/09/2022 0:00	S	ST	1		x	x	x						
18	BH40A	5/09/2022 0:00	S	ST	1		x	x	x						
19	BH8B	5/09/2022 0:00	S	ST	1	x									
20	BH10B	5/09/2022 0:00	S	ST	1	х									
21	BHDUP3	5/09/2022 0:00	S	ST	1		x	x	x						
22	BHTRIP3	5/09/2022 0:00	s	ST	1		x	x	x					INTERLAB	
23	BHRS2	5/09/2022 0:00	w	N,VOA,AG	3					x	x	x			
			-												
			-							1		-		·	
	·			······································				1			1				

CERTIFICATE OF ANALYSIS

Work Order	EB2226459	Page	: 1 of 21	
Client		Laboratory	Environmental Division Bris	bane
Contact	: MARK TUNKS	Contact	: Customer Services EB	
Address	SUITE 29, LEVEL 2 75-77 WHARF STREET TWEED HEADS 2485	Address	: 2 Byth Street Stafford QLD	Australia 4053
Telephone	: 07 5536 8863	Telephone	: +61-7-3243 7222	
Project	: 2022.1106 Bruxner Highway GOONELLABAH	Date Samples Received	: 07-Sep-2022 12:30	
Order number	: HMC2022.1106	Date Analysis Commenced	: 09-Sep-2022	
C-O-C number	:	Issue Date	15-Sep-2022 17:59	
Sampler	: MATTHEW FLANAGAN HMC			Hac-MRA NATA
Site	:			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 22			Accredited for compliance with
No. of samples analysed	: 22			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Timothy Creagh	2IC Organic Chemist	Brisbane Organics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EP068 Pesticides by GCMS: The LOR for Dieldrin has been raised for sample 'BH38A' due to matrix interference.
- EG005T (Total Metals by ICP-AES): Sample EB2226488-002 shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): BH23A (EB2226459-001) shows poor duplicate results due to sample heterogeneity. This has been confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): BH33A (EB2226459-011) shows poor duplicate results due to sample heterogeneity. This has been confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): BH24A (EB2226459-002) shows poor matrix spike recovery due to sample heterogeneity. This has been confirmed by visual inspection.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH23A	BH24A	BH25A	BH26A	BH27A
		Sampli	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-001	EB2226459-002	EB2226459-003	EB2226459-004	EB2226459-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		0.1	%	15.4	34.4	28.2	33.2	22.6
EG005(ED093)T: Total Metals by	/ ICP-AES							
Lead	7439-92-1	5	mg/kg	17	40	641	69	46

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH28A	BH29A	BH30A	BH31A	BH32A
		Sampli	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-006	EB2226459-007	EB2226459-008	EB2226459-009	EB2226459-010
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried	l @ 105-110°C)							
Moisture Content		0.1	%	31.5	32.0	32.9	36.0	37.4
EG005(ED093)T: Total Metals by	y ICP-AES							
Lead	7439-92-1	5	mg/kg	84	224	177	885	35

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH33A	BH34A	BH35A	BH36A	BH37A
		Samplii	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-011	EB2226459-012	EB2226459-013	EB2226459-014	EB2226459-015
			-	Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	D 105-110°C)							
Moisture Content		0.1	%	32.3	33.7	36.2	35.6	
Moisture Content		1.0	%					31.6
EG005(ED093)T: Total Metals by I	CP-AES							
Arsenic	7440-38-2	5	mg/kg					<5
Cadmium	7440-43-9	1	mg/kg					3
Chromium	7440-47-3	2	mg/kg					39
Copper	7440-50-8	5	mg/kg					32
Lead	7439-92-1	5	mg/kg	1120	720	1750	176	162
Nickel	7440-02-0	2	mg/kg					12
Zinc	7440-66-6	5	mg/kg					630
EG035T: Total Recoverable Merc	urv by FIMS							
Mercury	7439-97-6	0.1	mg/kg					0.3
EP068A: Organochlorine Pesticid								
alpha-BHC	319-84-6	0.05	mg/kg					<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg					<0.05
beta-BHC	319-85-7	0.05	mg/kg					<0.05
gamma-BHC	58-89-9	0.05	mg/kg					<0.05
delta-BHC	319-86-8	0.05	mg/kg					<0.05
Heptachlor	76-44-8	0.05	mg/kg					<0.05
Aldrin	309-00-2	0.05	mg/kg					<0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg					<0.05
Total Chlordane (sum)		0.05	mg/kg					<0.05
trans-Chlordane	5103-74-2	0.05	mg/kg					<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg					<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg					<0.05
Dieldrin	60-57-1	0.05	mg/kg					<0.05
4.4`-DDE	72-55-9	0.05	mg/kg					<0.05
Endrin	72-20-8	0.05	mg/kg					<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg					<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg					<0.05
4.4`-DDD	72-54-8	0.05	mg/kg					<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg					<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg					<0.05
4.4`-DDT	50-29-3	0.2	mg/kg					<0.2

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH33A	BH34A	BH35A	BH36A	BH37A
		Samplii	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-011	EB2226459-012	EB2226459-013	EB2226459-014	EB2226459-015
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
Endrin ketone	53494-70-5	0.05	mg/kg					<0.05
Methoxychlor	72-43-5	0.2	mg/kg					<0.2
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg					<0.05
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg					<0.05
	0-2							
EP068B: Organophosphorus Pe	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg					<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg					<0.05
Monocrotophos	6923-22-4	0.2	mg/kg					<0.2
Dimethoate	60-51-5	0.05	mg/kg					<0.05
Diazinon	333-41-5	0.05	mg/kg					<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg					<0.05
Parathion-methyl	298-00-0	0.2	mg/kg					<0.2
Malathion	121-75-5	0.05	mg/kg					<0.05
Fenthion	55-38-9	0.05	mg/kg					<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg					<0.05
Parathion	56-38-2	0.2	mg/kg					<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg					<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg					<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg					<0.05
Fenamiphos	22224-92-6	0.05	mg/kg					<0.05
Prothiofos	34643-46-4	0.05	mg/kg					<0.05
Ethion	563-12-2	0.05	mg/kg					<0.05
Carbophenothion	786-19-6	0.05	mg/kg					<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg					<0.05
EP075(SIM)B: Polynuclear Arom	atic Hvdrocarbons							
Naphthalene	91-20-3	0.5	mg/kg					<0.5
Acenaphthylene	208-96-8	0.5	mg/kg					<0.5
Acenaphthene	83-32-9	0.5	mg/kg					<0.5
Fluorene	86-73-7	0.5	mg/kg					<0.5
Phenanthrene	85-01-8	0.5	mg/kg					<0.5
Anthracene	120-12-7	0.5	mg/kg					<0.5
Fluoranthene	206-44-0	0.5	mg/kg					<0.5
Pyrene	129-00-0	0.5	mg/kg					<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg					<0.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH33A	BH34A	BH35A	BH36A	BH37A
		Sampli	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-011	EB2226459-012	EB2226459-013	EB2226459-014	EB2226459-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons - Con	tinued						
Chrysene	218-01-9	0.5	mg/kg					<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg					<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg					<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg					<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg					<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg					<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg					<0.5
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg					<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg					<0.5
[^] Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg					0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg					1.2
EP080/071: Total Petroleum Hydroca	rbons							
C6 - C9 Fraction		10	mg/kg					<10
C10 - C14 Fraction		50	mg/kg					<50
C15 - C28 Fraction		100	mg/kg					<100
C29 - C36 Fraction		100	mg/kg					<100
^ C10 - C36 Fraction (sum)		50	mg/kg					<50
EP080/071: Total Recoverable Hydro	carbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg					<10
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg					<10
>C10 - C16 Fraction		50	mg/kg					<50
>C16 - C34 Fraction		100	mg/kg					<100
>C34 - C40 Fraction		100	mg/kg					<100
^ >C10 - C40 Fraction (sum)		50	mg/kg					<50
^ >C10 - C16 Fraction minus Naphthalene (F2))	50	mg/kg					<50
EP080: BTEXN								1
Benzene	71-43-2	0.2	mg/kg					<0.2
Toluene	108-88-3	0.5	mg/kg					<0.5
Ethylbenzene	100-41-4	0.5	mg/kg					<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg					<0.5
ortho-Xylene	95-47-6	0.5	mg/kg					<0.5
^ Sum of BTEX		0.2	mg/kg					<0.2

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH33A	BH34A	BH35A	BH36A	BH37A
		Sampl	ing date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-011	EB2226459-012	EB2226459-013	EB2226459-014	EB2226459-015
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Total Xylenes		0.5	mg/kg					<0.5
Naphthalene	91-20-3	1	mg/kg					<1
EP068S: Organochlorine Pestici	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%					87.5
EP068T: Organophosphorus Pes	sticide Surrogate							
DEF	78-48-8	0.05	%					90.2
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%					106
2-Chlorophenol-D4	93951-73-6	0.5	%					102
2.4.6-Tribromophenol	118-79-6	0.5	%					102
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%					92.4
Anthracene-d10	1719-06-8	0.5	%					111
4-Terphenyl-d14	1718-51-0	0.5	%					119
EP080S: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%					86.7
Toluene-D8	2037-26-5	0.2	%					72.6
4-Bromofluorobenzene	460-00-4	0.2	%					82.5

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH38A	BH39A	BH40A	BH8B	BH10B
, , , , , , , , , , , , , , , , , , ,		Samplir	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-016	EB2226459-017	EB2226459-018	EB2226459-019	EB2226459-020
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		0.1	%				34.4	32.4
Moisture Content		1.0	%	32.8	26.3	28.8		
EG005(ED093)T: Total Metals by	ICP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5		
Cadmium	7440-43-9	1	mg/kg	<1	<1	1		
Chromium	7440-47-3	2	mg/kg	43	26	51		
Copper	7440-50-8	5	mg/kg	22	21	13		
Lead	7439-92-1	5	mg/kg	106	16	34	146	783
Nickel	7440-02-0	2	mg/kg	11	18	13		
Zinc	7440-66-6	5	mg/kg	446	154	562		
EG035T: Total Recoverable Mer	curv by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1		
EP068A: Organochlorine Pesticio	des (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	<0.05		
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05	<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.10	<0.05	<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05	<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	<0.2		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH38A	BH39A	BH40A	BH8B	BH10B
		Samplii	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-016	EB2226459-017	EB2226459-018	EB2226459-019	EB2226459-020
			-	Result	Result	Result	Result	Result
EP068A: Organochlorine Pestici	des (OC) - Continued							
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	<0.05		
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	<0.2		
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05	<0.05		
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05	<0.05		
	0-2							
P068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	<0.05		
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	<0.05		
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	<0.2		
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	<0.05		
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	<0.05		
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	<0.05		
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	<0.2		
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	<0.05		
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	<0.05		
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	<0.05		
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	<0.05		
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	<0.05		
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	<0.05		
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	<0.05		
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	<0.05		
P075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5		
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5		

Page : 11 of 21 Work Order : EB2226459 Client : HMC ENVIRONMENTAL Project : 2022.1106 Bruxner Highway GOONELLABAH

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH38A	BH39A	BH40A	BH8B	BH10B
		Samplii	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-016	EB2226459-017	EB2226459-018	EB2226459-019	EB2226459-020
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Coni	inued						
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5		
Sum of polycyclic aromatic hydrocarbor	IS	0.5	mg/kg	<0.5	<0.5	<0.5		
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5		
`Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6		
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2		
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10		
C10 - C14 Fraction		50	mg/kg	<50	<50	<50		
C15 - C28 Fraction		100	mg/kg	<100	<100	<100		
C29 - C36 Fraction		100	mg/kg	<100	<100	<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50		
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	າຣ					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10		
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10		
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50		
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100		
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100		
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50		
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5		
1 Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH38A	BH39A	BH40A	BH8B	BH10B
		Sampli	ing date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-016	EB2226459-017	EB2226459-018	EB2226459-019	EB2226459-020
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5		
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1		
EP068S: Organochlorine Pesticio	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	89.3	72.6	77.6		
EP068T: Organophosphorus Pes	ticide Surrogate							
DEF	78-48-8	0.05	%	133	81.1	86.0		
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%	102	107	106		
2-Chlorophenol-D4	93951-73-6	0.5	%	110	110	113		
2.4.6-Tribromophenol	118-79-6	0.5	%	110	116	108		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	97.8	83.5	86.9		
Anthracene-d10	1719-06-8	0.5	%	115	95.1	93.1		
4-Terphenyl-d14	1718-51-0	0.5	%	145	98.3	102		
EP080S: TPH(V)/BTEX Surrogate	S							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	80.3	89.1	91.2		
Toluene-D8	2037-26-5	0.2	%	66.8	77.0	73.8		
4-Bromofluorobenzene	460-00-4	0.2	%	78.6	84.4	82.0		

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BHDUP3	 	
		Samplii	ng date / time	05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-021	 	
				Result	 	
EA055: Moisture Content (Dried @) 105-110°C)					
Moisture Content		1.0	%	27.4	 	
EG005(ED093)T: Total Metals by IC	CP-AES					
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	27	 	
Copper	7440-50-8	5	mg/kg	30	 	
Lead	7439-92-1	5	mg/kg	24	 	
Nickel	7440-02-0	2	mg/kg	23	 	
Zinc	7440-66-6	5	mg/kg	133	 	
EG035T: Total Recoverable Mercu	ury by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticide	es (OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BHDUP3	 	
		Sampli	ng date / time	05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-021	 	
				Result	 	
EP068A: Organochlorine Pestici	des (OC) - Continued					
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP068B: Organophosphorus Pe	sticides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	

Sampling dather / Main Or-Support Sampling dather / Main Or-Support Image: Control of the support of the suppo	Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BHDUP3	 	
Peak name name name name name name name EP075(510)/B2: Polyniciaar Azomatic hydrocarbons - 205-692 (205-823) 0.5 mg/kg <0.5			Samplii	ng date / time	05-Sep-2022 00:00	 	
Beaution	Compound	CAS Number	LOR	Unit	EB2226459-021	 	
Benzo(s)philoaranhene20594 2002400					Result	 	
BenzolyNutoranthene 207.099 0.5 mg/kg 40.5 <	EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued				
Benze(a)pyrene 65328 0.5 mg/kg <0.5 Inden(1,23.cd)pyrene 193.396 0.5 mg/kg <0.5	Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Indencit 2.3 colpyren 193.385 0.5 mg/kg 0.05 Diban(2.1)mhtracene 6.370.3 0.5 mg/kg 0.05 <td>Benzo(k)fluoranthene</td> <td>207-08-9</td> <td>0.5</td> <td>mg/kg</td> <td><0.5</td> <td> </td> <td> </td>	Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Diberta(a h)anthracene 53-70.3 0.5 mg/hg <0.5	Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Benzo(g.h.ljperylene 191-242 0.5 mg/kg 4.05	Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbons0.5mg/kg40.5^ Benzol (a)ryme TEQ (LOR)0.5mg/kg0.6	Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
A Benzo(a)prene TEQ (zero) 0.5 mg/kg 0.6 A Benzo(a)prene TEQ (laft (CR) 0.5 mg/kg 0.6 </td <td>Benzo(g.h.i)perylene</td> <td>191-24-2</td> <td>0.5</td> <td>mg/kg</td> <td><0.5</td> <td> </td> <td> </td>	Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
A Benzo(a)pyrene TEQ (half LOR) 0.5 mg/kg 0.6	^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5	 	
^ Banzo(a)pyrane TEQ (LOR) 0.5 mg/kg 1.2 EP080071: Total Petroleum Hydrocarbons	^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
EP880/071: Total Petroleum Hydrocarbons Image	^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
C6-C9 Fraction10mg/kg<10mC0-C14 Fraction50mg/kg<100	^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
C10 - C14 Fraction 50 mg/kg <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <th< td=""><td>EP080/071: Total Petroleum Hydrocart</td><td>oons</td><td></td><td></td><td></td><td></td><td></td></th<>	EP080/071: Total Petroleum Hydrocart	oons					
C15 - C28 Fraction 100 mg/kg <100	C6 - C9 Fraction		10	mg/kg	<10	 	
C29 - C36 Fraction 100 mg/kg <100 mg/kg <100	C10 - C14 Fraction		50	mg/kg	<50	 	
^ C10 - C36 Fraction (sum) 50 mg/kg <50 mg/kg <50	C15 - C28 Fraction		100	mg/kg	<100	 	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fraction Section C6 - C10 Fraction C6 - C10 Fraction C6 - C10 Fraction C6 - C10 Fraction Mg/kg <10 mg/kg <10	C29 - C36 Fraction		100	mg/kg	<100	 	
C6-C10 Fraction C6_C10-BTEX C6_C10-BTEX 10 mg/kg <10 mg/kg <	^ C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
^ C6 - C10 Fraction minus BTEX C6_C10-ETK 10 mg/kg <10	EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns			
Cf 1 Cf 2 Cf 3 Cf 3 Cf 4 Cf 4 <thcf 4<="" th=""> Cf 4 Cf 4 <thc< td=""><td>C6 - C10 Fraction</td><td>C6_C10</td><td>10</td><td>mg/kg</td><td><10</td><td> </td><td> </td></thc<></thcf>	C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
>C10 - C16 Fraction 50 mg/kg <50		C6_C10-BTEX	10	mg/kg	<10	 	
>C16 - C34 Fraction 100 mg/kg <100 mg/kg <100 <td></td> <td></td> <td>50</td> <td>mg/kg</td> <td><50</td> <td> </td> <td> </td>			50	mg/kg	<50	 	
>C34 - C40 Fraction100mg/kg<100^ >C10 - C40 Fraction (sum)50mg/kg<50	>C16 - C34 Fraction		100		<100	 	
^>C10 - C40 Fraction (sum)50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50mg/kg<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50<50	>C34 - C40 Fraction		100		<100	 	
^ >C10 - C16 Fraction minus Naphthalene50mg/kg<50mg/kg<50 <th< td=""><td>^ >C10 - C40 Fraction (sum)</td><td></td><td>50</td><td></td><td><50</td><td> </td><td> </td></th<>	^ >C10 - C40 Fraction (sum)		50		<50	 	
EP080: BTEXN Benzene 71-43-2 0.2 mg/kg <0.2 mg/kg <0.2 mg/kg <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2<	-		50		<50	 	
Benzene 71-432 0.2 mg/kg <0.2 mg/kg <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2							
Toluene 108-883 0.5 mg/kg <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td></td><td>71-43-2</td><td>0.2</td><td>mg/kg</td><td><0.2</td><td> </td><td> </td></t<>		71-43-2	0.2	mg/kg	<0.2	 	
Ethylbenzene 100-41-4 0.5 mg/kg <0.5						 	
meta- & para-Xylene 108-38-3 106-42-3 0.5 mg/kg <0.5	Ethylbenzene					 	
ortho-Xylene 95-47-6 0.5 mg/kg <0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td>						 	
			0.5		<0.5	 	
^ Total Xylenes 0.5 mg/kg <0.5						 	

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BHDUP3	 	
		Sampli	ng date / time	05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-021	 	
				Result	 	
EP080: BTEXN - Continued						
Naphthalene	91-20-3	1	mg/kg	<1	 	
EP068S: Organochlorine Pesticide S	urrogate					
Dibromo-DDE	21655-73-2	0.05	%	76.9	 	
EP068T: Organophosphorus Pestici	de Surrogate					
DEF	78-48-8	0.05	%	120	 	
EP075(SIM)S: Phenolic Compound S	Surrogates					
Phenol-d6	13127-88-3	0.5	%	109	 	
2-Chlorophenol-D4	93951-73-6	0.5	%	109	 	
2.4.6-Tribromophenol	118-79-6	0.5	%	114	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	0.5	%	83.1	 	
Anthracene-d10	1719-06-8	0.5	%	97.6	 	
4-Terphenyl-d14	1718-51-0	0.5	%	102	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	90.1	 	
Toluene-D8	2037-26-5	0.2	%	79.6	 	
4-Bromofluorobenzene	460-00-4	0.2	%	86.5	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS2	 	
		Sampli	ng date / time	05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-022	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.003	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035T: Total Recoverable Mercu	ry by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP068A: Organochlorine Pesticides	s (OC)					
alpha-BHC	319-84-6	0.5	µg/L	<0.5	 	
Hexachlorobenzene (HCB)	118-74-1	0.5	µg/L	<0.5	 	
beta-BHC	319-85-7	0.5	µg/L	<0.5	 	
gamma-BHC	58-89-9	0.5	µg/L	<0.5	 	
delta-BHC	319-86-8	0.5	µg/L	<0.5	 	
Heptachlor	76-44-8	0.5	µg/L	<0.5	 	
Aldrin	309-00-2	0.5	µg/L	<0.5	 	
Heptachlor epoxide	1024-57-3	0.5	µg/L	<0.5	 	
trans-Chlordane	5103-74-2	0.5	µg/L	<0.5	 	
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5	 	
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	 	
Dieldrin	60-57-1	0.5	µg/L	<0.5	 	
4.4`-DDE	72-55-9	0.5	µg/L	<0.5	 	
Endrin	72-20-8	0.5	µg/L	<0.5	 	
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	 	
4.4`-DDD	72-54-8	0.5	µg/L	<0.5	 	
Endrin aldehyde	7421-93-4	0.5	µg/L	<0.5	 	
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	 	
4.4`-DDT	50-29-3	2.0	µg/L	<2.0	 	
Endrin ketone	53494-70-5	0.5	µg/L	<0.5	 	
Methoxychlor	72-43-5	2.0	µg/L	<2.0	 	
^ Total Chlordane (sum)		0.5	µg/L	<0.5	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.5	µg/L	<0.5	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	μg/L	<0.5	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS2	 	
	Sampling date / time			05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-022	 	
				Result	 	
EP068A: Organochlorine Pesticic	des (OC) - Continued					
EP068B: Organophosphorus Pes	ticides (OP)					
Dichlorvos	62-73-7	0.5	µg/L	<0.5	 	
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	 	
Monocrotophos	6923-22-4	2.0	µg/L	<2.0	 	
Dimethoate	60-51-5	0.5	µg/L	<0.5	 	
Diazinon	333-41-5	0.5	µg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	 	
Parathion-methyl	298-00-0	2.0	µg/L	<2.0	 	
Malathion	121-75-5	0.5	µg/L	<0.5	 	
Fenthion	55-38-9	0.5	µg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	 	
Parathion	56-38-2	2.0	µg/L	<2.0	 	
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	µg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	µg/L	<0.5	 	
Ethion	563-12-2	0.5	µg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	µg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	 	
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons					
Naphthalene	91-20-3	1.0	μg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	BHRS2				
		Sampli	ng date / time	05-Sep-2022 00:00				
Compound	CAS Number	LOR	Unit	EB2226459-022				
				Result				
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0				
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0				
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0				
^ Sum of polycyclic aromatic hydrocarbons	i	0.5	µg/L	<0.5				
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5				
EP080/071: Total Petroleum Hydrocarb								
C6 - C9 Fraction		20	µg/L	<20				
C10 - C14 Fraction		50	µg/L	<50				
C15 - C28 Fraction		100	µg/L	<100				
C29 - C36 Fraction		50	µg/L	<50				
[^] C10 - C36 Fraction (sum)		50	µg/L	<50				
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio						
C6 - C10 Fraction	C6_C10	20	µg/L	<20				
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20				
(F1)								
>C10 - C16 Fraction		100	µg/L	<100				
>C16 - C34 Fraction		100	µg/L	<100				
>C34 - C40 Fraction		100	µg/L	<100				
^ >C10 - C40 Fraction (sum)		100	µg/L	<100				
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100				
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1				
Toluene	108-88-3	2	µg/L	<2				
Ethylbenzene	100-41-4	2	µg/L	<2				
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2				
ortho-Xylene	95-47-6	2	μg/L	<2				
^ Total Xylenes		2	µg/L	<2				
^ Sum of BTEX		1	μg/L	<1				
Naphthalene	91-20-3	5	μg/L	<5				
EP068S: Organochlorine Pesticide Sur								
Dibromo-DDE	21655-73-2	0.5	%	92.7				
EP068T: Organophosphorus Pesticide								
DEF	78-48-8	0.5	%	91.1				
	10-40-0	0.0	,3	÷	I			

Sub-Matrix: WATER			Sample ID	BHRS2	 	
(Matrix: WATER)						
		Sampli	ng date / time	05-Sep-2022 00:00	 	
Compound	CAS Number	LOR	Unit	EB2226459-022	 	
				Result	 	
EP075(SIM)S: Phenolic Compound S	urrogates					
Phenol-d6	13127-88-3	1.0	%	36.5	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	106	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	100	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	72.5	 	
Anthracene-d10	1719-06-8	1.0	%	109	 	
4-Terphenyl-d14	1718-51-0	1.0	%	132	 	
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	2	%	93.8	 	
Toluene-D8	2037-26-5	2	%	103	 	
4-Bromofluorobenzene	460-00-4	2	%	94.8	 	

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	138
EP068T: Organophosphorus Pesticide Surrogate	•		
DEF	78-48-8	23	134
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	35	154
2-Chlorophenol-D4	93951-73-6	42	153
2.4.6-Tribromophenol	118-79-6	26	157
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	34	156
Anthracene-d10	1719-06-8	37	153
4-Terphenyl-d14	1718-51-0	42	172
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	53	134
Toluene-D8	2037-26-5	60	131
4-Bromofluorobenzene	460-00-4	59	127
Sub-Matrix: WATER	Γ	Recovery	Limits (%)
Sub-Matrix: WATER	CAS Number	Recovery Low	Limits (%) High
	CAS Number		
Compound	CAS Number 21655-73-2		
Compound EP068S: Organochlorine Pesticide Surrogate	21655-73-2	Low	High
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE	21655-73-2	Low	High
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate	21655-73-2	Low 45	High 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF	21655-73-2	Low 45	High 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates	21655-73-2 78-48-8	Low 45 45	High 139 139
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6	21655-73-2 78-48-8 13127-88-3	Low 45 45 10	High 139 139 72
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4	21655-73-2 78-48-8 13127-88-3 93951-73-6	Low 45 45 10 27	High 139 139 72 130
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol	21655-73-2 78-48-8 13127-88-3 93951-73-6	Low 45 45 10 27	High 139 139 72 130
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6	Low 45 45 10 27 19	High 139 139 72 130 181
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8	Low 45 45 10 27 19 14	High 139 139 72 130 181 146
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8	Low 45 45 10 27 19 14 35	High 139 139 72 130 181 146 137
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8	Low 45 45 10 27 19 14 35	High 139 139 72 130 181 146 137
Compound EP068S: Organochlorine Pesticide Surrogate Dibromo-DDE EP068T: Organophosphorus Pesticide Surrogate DEF EP075(SIM)S: Phenolic Compound Surrogates Phenol-d6 2-Chlorophenol-D4 2.4.6-Tribromophenol EP075(SIM)T: PAH Surrogates 2-Fluorobiphenyl Anthracene-d10 4-Terphenyl-d14 EP080S: TPH(V)/BTEX Surrogates	21655-73-2 78-48-8 13127-88-3 93951-73-6 118-79-6 321-60-8 1719-06-8 1719-06-8	Low 45 45 10 27 19 14 35 36	High 139 139 72 130 181 146 137 154